Identyfikatory
Warianty tytułu
Wpływ dodatku pyłów diabazowych na właściwości cementowego betonu nawierzchniowego
Języki publikacji
Abstrakty
The aim of the paper was to analyse the possibility to use waste material which is created during the production of mineral-asphalt mixes as a side effect of the process of drying and dedusting diabase aggregate in high temperature. Experimental studies included the analysis of the influence of the addition of diabase dust on the improvement of the properties of cement concrete destined for the construction of local roads. The mineral additive in the form of diabase dust, which constitutes natural waste, was inserted into the concrete mix as a mineral additive substituting a part of the aggregate with the constant amount of cement and water, and additionally as the substitute for cement. The performed studies resulted in the conclusion that adding diabase dust significantly increased the tightness and density of concrete, which impacts the increase of compressive strength by 7, 21 and 28% in reference to model concrete. The insertion of the waste diabase dust into the concrete mix significantly improved the freeze-thaw resistance of concrete after 150 cycles of testing and reduced the water absorption by 6, 15 and 21%. Using diabase dust as a substitute in the following amount: 50, 100 and 150 kg/m3 did not cause significant changes in the scope of density and water absorption, whereas the reduction of the compressive strength was from 8, 23 and 33% in reference to the model concrete. The application of dust as the substitute for cement resulted in the reduction of the costs of concrete by 6, 12 and 18% and resulted in the possibility to fully apply waste material, which confirms the justness of undertaking implementation research. Concrete with the use of waste rock dusts may be qualified as concrete that is environmentally friendly and compliant with the sustainable development of modern construction materials.
Celem pracy było zbadanie możliwości wykorzystania odpadowego materiału, który powstaje podczas produkcji mieszanek mineralno-asfaltowych jako efekt uboczny procesu suszenia i odpylania w wysokiej temperaturze kruszywa diabazowego. W ramach badań eksperymentalnych analizowano wpływ dodatku pyłu diabazowego na poprawę właściwości betonu cementowego przeznaczonego do budowy dróg lokalnych. Dodatek mineralny w postaci pyłu diabazowego stanowiącego naturalny odpad wprowadzano do mieszanki betonowej jako dodatek mineralny zastępujący część kruszywa przy stałej ilości cementu i wody oraz dodatkowo jako zamiennik cementu. W wyniku przeprowadzonych badań stwierdzono, że dodanie pyłu diabazowego znacznie zwiększa szczelność i gęstość betonu co wpływa na zwiększenie wytrzymałości na ściskanie od 7, 21 i 28% w stosunku do betonu wzorcowego. Wprowadzenie odpadowego pyłu diabazowego do mieszanki betonowej znacząco poprawiło mrozoodporność betonu po 150 cyklach badania oraz zmniejszyło w porównaniu do betonu wzorcowego nasiąkliwość o 6, 15 i 21%. Natomiast zastosowanie pyłu diabazowego jako zamiennika cementu w ilości 50, 100 i 150 kg/m3 nie spowodowało znacznych zmian w zakresie gęstości i nasiąkliwości, ale nastąpiło zmniejszenie wytrzymałości na ściskanie wyniosło od 8, 23 i 33% w stosunku do betonu wzorcowego. W wyniku zastosowania pyłu jako zamiennika cementu uzyskano obniżenie kosztów betonu o 6, 12 i 18% i uzyskano możliwość pełnego zastosowania odpadowego materiału co potwierdza zasadność podjęcia badań wdrożeniowych. Beton z zastosowaniem odpadowych pyłów kamiennych można zakwalifikować do betonów przyjaznych dla środowiska i zgodnych z równoważonym rozwojem nowoczesnych materiałów budowlanych.
Czasopismo
Rocznik
Tom
Strony
395--411
Opis fizyczny
Bibliogr. 64 poz., il., tab.
Twórcy
autor
- Faculty of Civil Engineering and Geodesy, Military University of Technology, Warsaw, Poland
autor
- Faculty of Civil and Environmental Engineering, West Pomeranian University of Technology, Szczecin, Poland
Bibliografia
- [1] G. Prokopski, V. Marchuk, A. Huts, “The effect of using granite dust as a component of concrete mixture”, Case Studies in Construction Materials, 2020, vol. 13, DOI: 10.1016/j.cscm.2020.e00349.
- [2] S. Ghorbani, et al., “Mechanical and durability behaviour of concrete with granite waste dust as partial cement replacement under adverse exposure conditions”, Construction and Building Materials, 2018, vol. 194, pp. 143-152, DOI: 10.1016/j.conbuildmat.2018.11.023.
- [3] V. Rahhal, V. Bonavetti, L. Trusilewicz, C. Pedrajas, L. Talero, “Role of the filler on Portland cement hydration at early ages”, Construction and Building Materials, 2012, vol. 27, no. 1, pp. 82-90, DOI: 10.1016/j.conbuildmat.2011.07.021.
- [4] M. Dobiszewska, J. Kuziak, P. Woyciechowski, M. Kępniak, “Główne aspekty trwałości betonu modyfikowanego odpadowym pyłem bazaltowym z odpylania kruszyw w wytwórni MMA”, Journal of Civil Engineering, Environment and Architecture. JCEEA, vol. 33, no. 63, pp. 115-122 (in Polish), DOI: 10.7862/rb.2016.13.
- [5] T. Devadass, “Experimental study on replacement of fine aggregate in concrete with dissimilar curing conditions”, Case Studies in Construction Materials, 219, vol. 11, DOI: 10.1016/j.cscm.2019.e00245.
- [6] T. Rudnicki, “Functional Method of Designing Self-Compacting Concrete”, Materials, 2021, vol. 14, no. 2, DOI: 10.3390/ma14020267.
- [7] M. Małek, W. Łasica, M. Jackowski, M. Kadela, “Effect of Waste Glass Addition as a Replacement for Fine Aggregate on Properties of Mortar”, Materials, 2020, vol. 13, no. 14, DOI: 10.3390/ma13143189.
- [8] M. Dobiszewska, “Use of basalt powder in a cementitious mortar and concrete as substitute of sand”, Budownictwo i Architektura, 2016, vol. 15, no. 4, pp. 75-85, DOI: 10.24358/Bud-Arch_16_154_08.
- [9] R. Jurczak, F. Szmatuła, T. Rudnicki, J. Korentz, “Effect of Ground Waste Glass Addition on the Strength and Durability of Low Strength Concrete Mixes”, Materials, 2021, vol. 14, no. 1, DOI: 10.3390/ma14010190.
- [10] A. Szcześniak, J. Zychowicz, A. Stolarski: Influence of Fly Ash Additive on the Properties of Concrete with Slag Cement”, Materials, 2020, vol. 13, no. 15, DOI: 10.3390/ma13153265.
- [11] M. Dobiszewska, “Waste materials used in making mortar and concreto”, Journal of Materials Education, 2017, vol. 39, pp. 133-156.
- [12] R. Jurczak, “Możliwość zastosowania pyłów z odpylania kruszyw do mieszanek cementowo-gruntowych”, Magazyn Autostrady, 2010, no. 8-9, pp. 62-65.
- [13] M. Dobiszewska, “Właściwości betonu z dodatkiem mineralnego pyłu odpadowego”, Dni Betonu, 2014.
- [14] Ł. Mrozik, A. Kaczmarek, M. Doering, P. Socha, “Dodatki mineralne w produkcji betonu wibroprasowanych elementów betonowych”, Materiały Budowlane, 2013, vol. 10, pp. 35-36.
- [15] M. Dobiszewska, K. Wrzecion, “The Study of the Properties of Concrete Containing Waste Powder as a Fine Aggregate”, International Conference Environmental Engineering, 10th International Conference, Lithuania, 27-28 April, 2017, DOI: 10.3846/enviro.2017.016.
- [16] S. Uncík, V. Kmecová, “The Effect of Basalt Powder on the Properties of Cement Composites”, Procedia Engineering, 2013, vol. 65, pp. 51-56, DOI: 10.1016/j.proeng.2013.09.010.
- [17] M. Dobiszewska, W. Pichór, P. Szołdra, “Effect of basalt powder addition on properties of mortar”, MATEC Web of Conferences, 2019, vol. 262, DOI: 10.1051/matecconf/201926206002.
- [18] M. Dobiszewska, A. Beycioğlu, “Physical Properties and Microstructure of Concrete with Waste Basalt Powder Addition”, Materials, 2020, vol. 13, no.16, DOI: 10.3390/ma13163503.
- [19] M. Małek, M. Jackowski, W. Życiński, M. Wachowski, “Characterization of new fillers addition on mechanical strength of concrete”, Materiali in Tehnologije, 2019, vol. 53, no. 3, pp. 399-403, DOI: 10.17222/mit.2018.155.
- [20] E. Gerasimova, F. Kapustin, M. Rogante, D. Kochnev, “Granite dust as a possible component of the dry construction mixtures”, Technogen Conference 146 Proceedings, International Conference with Elements of School for Young Scientists on Recycling and Utilization of Technogenic Formations, 2017.
- [21] B. Rai, S. Kumar, K. Satish, “Effect of fly ash on mortar mixes with quarry dust as fine aggregate”, Advances in Materials Science and Engineering, 2014, vol. 2014, art. ID 626425, DOI: 10.1155/2014/626425.
- [22] K. Srinivasan, J. Premalatha, S. Srigeethaa, “A performance study on partial replacement of polymer industries waste (PIW) as fine aggregate in concrete”, Archives of Civil Engineering, 2018, vol. 64, no. 3, pp. 45-56, DOI: 10.2478/ace-2018-0028.
- [23] T.S. Thandavamoorthy, “Feasibility of making concrete using lignite coal bottom ash as fine aggregate”, Archives of Civil Engineering, 2015, vol. 61, no. 3, pp. 19-30, DOI: 10.1515/ace-2015-0022.
- [24] B. Jaworska, J.J. Sokołowska, P. Łukowski, J. Jaworski, “Waste mineral powders as a components of Polymer-cement composites”, Archives of Civil Engineering, 216, vol. 61, no. 4, pp. 199-210, DOI: 10.1515/ace-2015-0045.
- [25] N. Almeida, F. Branco, J. de Brito, J.R. Santos, “High-performance concrete with recycled stone slurry”, Cement and Concrete Research, 2007, vol. 37, no. 2, pp. 210-220, DOI: 10.1016/j.cemconres.2006.11.003.
- [26] T. Rudnicki, R. Jurczak, “Recycling of a Concrete Pavement after over 80 Years in Service”, Materials, 2020, vol. 13, no. 10, DOI: 10.3390/ma13102262.
- [27] M. Małek, Ł. Łasica, M. Kadela, J. Kluczyński, D. Dudek, “Physical and Mechanical Properties of Polypropylene Fibre-Reinforced Cement-Glass Composite”, Materials, 2021, vol. 14, no. 3, DOI: 10.3390/ma14030637.
- [28] I. Messaoudene, R. Jauberthie, A. Rechache, A. Bounechada, “Strength development of ternary blended cement with marble powder and natural pozzolana,” Cement Wapno Beton, 2015, vol. 20, pp. 32-37.
- [29] L. Heikal, H. El-Didamony, M.S. Morsy, “Limestone-filled pozzolanic cement”, Cement and Concrete Research, 2000, vol. 30, pp. 1827-1834, DOI: 10.1016/S0008-8846(00)00402-6.
- [30] A. Arivumangai, T. Felixkala, “Strength and durability properties of granite powder concrete”, Journal of Civil Engineering Research, 2014, vol. 4, pp. 1-6.
- [31] M. Dobiszewska, W. Franus, S. Turbiak, “Analysis of the possibility of using powder basalt in cement mortar”, Journal of Civil Engineering, Environment and Architecture. JCEEA, 2016, vol. 33, no. 63, pp. 107-114, DOI: 10.7862/rb.2016.12.
- [32] M. Dobiszewska, J. Kuziak, P. Woyciechowski, M. Kępniak, “Major aspects of concrete durability modified by basalt waste powder from aggregate 158 dedusting in asphalt batch mix plant”, Journal of Civil Engineering, Environment and Architecture. JCEEA, 2016, vol. 33, no. 63, pp. 115-122, DOI: 10.7862/rb.2016.13.
- [33] M. Małek, M. Jackowski, W. Łasica, M. Kadela, “Influence of Polypropylene, Glass and Steel Fiber on the Thermal Properties of Concrete”, Materials, 2021, vol. 14, no. 8, DOI: 10.3390/ma14081888.
- [34] M. Dobiszewska, “Use of basalt powder in a cementitious mortar and concrete as a substitute of sand”, Budownictwo i Architektura, 2016, vol. 15, no. 4, pp. 75-85, DOI: 10.24358/Bud-Arch_16_154_08.
- [35] T. Rudnicki, P. Wołoszka, “The use of technology whitetopping in the aspect of implementation of repairs of flexible pavements”, Biuletyn Wojskowej Akademii Technicznej, 2016, vol. 65, no. 3, pp. 111-135, DOI: 10.5604/12345865.1223269.
- [36] S. Singh, R. Nagar, V. Agrawal, “Performance of granite cutting waste concrete under adverse exposure conditions”, Journal of Cleaner Production, 2016, vol. 127, pp. 172-182, DOI: 10.1016/j.jclepro.2016.04.034.
- [37] S. Tsivilis, G. Batis, E. Chaniotakis, G. Grigoriadis, D. Theodossis, “Properties and behavior of limestone cement concrete and mortar”, Cement and Concrete Research, 2000, vol. 30, no. 10, pp. 1679-1683, DOI: 10.1016/S0008-8846(00)00372-0.
- [38] G. Li, X. Zhao, “Properties of concrete incorporating fly ash and ground granulated blast-furnace slag”, Cement and Concrete Composites, 2003, vol. 25, no. 3, pp. 293-299, DOI: 10.1016/S0958-9465(02)00058-6.
- [39] M. Ghrici, S. Kenai, M. Said-Mansour, “Mechanical properties and durability of mortar and concrete containing natural pozzolana and limestone blended cements”, Cement and Concrete Composites, 2007, vol. 29, no. 7, pp. 542-549, DOI: 10.1016/j.cemconcomp.2007.04.009.
- [40] L.G. Li, Y.M. Wang, Y.P. Tan, A.K.H. Kwan, L.J. Li, “Adding granite dust as paste replacement to improve durability and dimensional stability of mortar”, Powder Technology, 2018, vol. 333, pp. 269-276, DOI: 10.1016/j.powtec.2018.04.055.
- [41] K.B. Rao, V.B. Desai, D.J. Mohan, “Probabilistic analysis of Mode II fracture of concrete with crushed granite stone fine aggregate replacing sand”, Construction and Building Materials, 2012, vol. 27, no. 1, pp. 319-330, DOI: 10.1016/j.conbuildmat.2011.07.041.
- [42] H. Binici, T. Shah, O. Aksogan, H. Kaplan, “Durability of concrete made with granite and marble as recycle aggregates”, Journal of Materials Processing Technology, 2008, vol. 208, no. 1-3, pp. 299-308, DOI: 10.1016/j.jmatprotec.2007.12.120.
- [43] F.P. Torgal, J.P. Castro-Gomes, “Influence of physical and geometrical properties of granite and limestone aggregates on the durability of a C20/25 strength class concrete”, Construction and Building Materials, 2006, vol. 20, no. 10, pp. 1079-1088, DOI: 10.1016/j.conbuildmat.2005.01.063.
- [44] C.M.F. Vieira, T.M. Soares, R. Sánchez, S.N. Monteiro, “Incorporation of granite waste in red ceramics”, Materials Science and Engineering A, 2004, vol. 373, no. 1-2, pp. 115-121, DOI: 10.1016/j.msea.2003.12.038.
- [45] R.A. Hamza, S. El-Haggar, S. Khedr, “Utilization of marble and granite waste in concrete bricks”, in 2011 International Conference on Environment and BioScience IPCBEE, vol. 21. Singapore: IACSIT Press; 2011.
- [46] Y. Divakar, S. Manjunath, M.U. Aswath, “Experimental investigation on behaviour of concrete with the use of granite fines”, IJAERS International Journal of Advanced Engineering Research and Science, 2012, vol. 1, no. 4, pp. 84-87.
- [47] G.L. Garas, M.E. Allam, E.S. Bakhoum, “Studies undertaken to incorporate marble and granite wastes in green concrete production”, ARPN. Journal of Engineering and Applied Sciences, 2014, vol. 9, no. 9, pp. 1559-1564.
- [48] M. Vijayalakshmi, A.S.S. Sekar, “Strength and durability properties of concrete made with granite industry waste”, Construction and Building Materials, 2013, vol. 46, pp. 1-7, DOI: 10.1016/j.conbuildmat.2013.04.018.
- [49] D.T.F. Kala, “Effect of granite powder on strength properties of concrete”, International Journal of Engineering Science, 2013, vol. 23, no. 2(12), pp. 36-50.
- [50] T. Felixkala, P. Partheeban, “Granite powder concrete”, Indian Journal of Science and Technology, 2010, vol. 3, no. 3, pp. 311-317, DOI: 10.17485/ijst/2010/v3i3.6.
- [51] E. Horszczaruk, P. Brzozowski, G. Adamczewski, T. Rudnicki, “Influence of Hydrostatic Pressure on Compressive Strength of Self-Consolidating Concrete”, Journal of Civil Engineering and Architecture, 2014, vol. 12, pp. 1549-1555, DOI: 10.17265/1934-7359/2014.12.009.
- [52] J. Pasławski, T. Rudnicki, “Agile/Flexible and Lean Management in Ready-Mix concrete delivery”, Archives of Civil Engineering, 2021, vol. 67, no. 1, pp. 689-709, DOI: 10.24425/ace.2021.136497.
- [53] Catalogue of Typical Structures of Rigid Pavements. Warszawa, GDDKiA, 2014. [Online]. Available: https://www.academia.edu/34805355/New_Polish_catalogue_of_typical_flexible_and_semi_rigid_pavements. [Accessed: 30 September 2020].
- [54] EN 12350-2:2019 Testing fresh concrete - Part 2: Slump test. Comite Europeen de Normalisation: Brussels, Belgium, 2019.
- [55] EN 12350-7:2019. Testing fresh concrete. Air content. Pressure Methods. Comite Europeen de Normalization: Brussels, Belgium, 2019.
- [56] EN 12350-6:2019. Testing fresh concrete. Density. Comite Europeen de Normalisation: Brussels, Belgium, 2019.
- [57] PN-B-06250:1988. Polish Standard Normal Concrete (in Polish). PKN: Warsaw, Poland, 1988.
- [58] EN 12390-2:2019. Testing hardened concrete - Part 2: Making and curing specimens for strength tests. Brussels, Belgium, 2019.
- [59] EN 12390-3:2019. Testing hardened concrete - Part 3: Compressive strength of test specimens. Brussels, Belgium, 2019.
- [60] EN 12390-8:2019. Testing hardened concrete - Part 8: Depth of penetration of water under pressure. Brussels, Belgium, 2019.
- [61] EN 12390-7:2019. Concrete testing - Part 7: Concrete density. Brussels, Belgium, 2019.
- [62] EN 932-3:1999 AMD 1 2004. Test for general properties of aggregates - part 3: Procedure and terminology for simplified petrographic description. Brussels, Belgium, 2004.
- [63] D-05.03.04v02. Conditions for execution and acceptance of construction works. Cement concrete surface. General Directorate for National Roads and Motorways, Warsaw April 2020.
- [64] EN 480-11:2008. Admixtures for Concrete, Cortar and Grout-Test Methods - Part 11: Determination of Air Void Characteristics in Hardened Concrete. Comite Europeen de Normalisation: Brussels, Belgium, 2000.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-877774f5-d7e3-4e94-b8fe-9374c306a054