PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Eco-design processes in the automotive industry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Every year approximately 70 million passenger cars are being produced and automotive industry is much bigger then just passenger cars. The impact of automotive industry on the environment is tremendous. From extracting raw materials through manufacturing and assembly processes, exploitation of the vehicle to the reprocessing irreversible, extensive environmental damage is done. The goal of this study is to show how implementing eco-design processes into supply chain management can reduce the impact of automotive industry on the environment by e.g. reducing the use of the fuel, increasing the use of recycled materials. Focus is on evaluation of current state, environmental impacts and potential improvements for design, raw materials, manufacturing and distribution and end-of-life phase.
Rocznik
Strony
131--137
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
  • Poznan University of Technology, Faculty of Engineering Management, Pl. Marii Skłodowskiej-Curie 5,60-965 Poznań, Poland
  • Czestochowa University of Technology, Faculty of Management, Department of Production Engineering and Safety, Al. Armii Krajowej 19B, 42-200 Czestochowa, Poland
  • University of Maribor, Faculty of Logistics, Mariborska 7, Celje, Slovenia
Bibliografia
  • 1.Allenby, B.R., Comrie, P.R., Graedel, T.E. 1995. Pollution prevention: matrix approaches to abridged life cycle assessment Environ Sci Technol, 29 (3), 134A-139A. DOI: 10.1021/es00003a751.
  • 2.Baryshnikova, N., Kiriliuk, O., Klimecka-Tatar, D. 2020. Management approach on food export expansion in the conditions of limited internal demand, Polish Journal of Management Studies, 21(2), 101-114. DOI: 10.17512/pjms.2020.21.2.08
  • 3.Bastani, P., Heywood, J.B., Hope, C.U.S., 2012. CAFÉ Standards Potential for Meeting Light-Duty Vehicle Fuel Economy Targets, 2016-2025 MIT Energy Initiative Report; MIT: Cambridge, MA, USA.
  • 4.Bennett, D., 2010. Green operations initiatives in the automotive industry: An environmental reports analysis and benchmarking study, Benchmarking: An International Journal, 17(3), 396-420, DOI: 10.1108/14635771011049362.
  • 5.Berg, S., 1997. Some aspects of LCA in the analysis of forestry operations J Clean Prod, 5(3), 211-217. DOI: 10.1016/S0959-6526(97)00040-1.
  • 6.Bird, M., Kochhar, A.K., 2009. Sustainable Design of Manufacturing Systems - Assessment of current practices in different parts of a multi-national automotive organization.
  • 7.Bokuvka, O., Kucharikova, L., Tillova, E., 2016. Recycling and properties of recycled aluminium alloys used in the transportation industry, Transport Problems, 11(2), 117-122. DOI: 10.20858/tp.2016.11.2.11.
  • 8.Broughton, J., Lu, Y., Winfield, P. 2014. A review of innovations in disbonding techniques for repair and recycling of automotive vehicles, International Journal of Adhesion & Adhesives 50, 119-127- DOI: 10.1016/j.ijadhadh.2014.01.021.
  • 9.Cerdas, F., Herrmann, Ch., Schebek, L.. 2019. Progress in Life Cycle Assessment.
  • 10.Das, S., Jawahir, I.S., Ungureanu, C.A. 2007. Life-cycle cost analysis: Aluminum versus steel in passenger cars. In Proceedings of the TMS Conference, Orlando, FL, USA, 25 February, 11-24.
  • 11.Dobson, I.D., 1996. Life cycle assessment for painting processes: putting the VOC issue in perspective Progress in Organic Coatings, 27 (1-4), 55-58. DOI: 10.1016/0300-9440(95)00519-6.
  • 12.European Environment Agency. 1997. Life Cycle Assessment: A guide to approaches, experiences and information sources.
  • 13.EC. Finkbeiner, M., Hoffmann, E., Kreisel, G. 1997. Environmental auditing: the functional unit in the life cycle inventory analysis of degreasing processes in the metal-processing industry Environmental Management, 21, 635- 642. DOI: 10.1007/s002679900056.
  • 14.Franz, E., Erler, F., Langer, T., Schlegel, A., Stoldt, J., Richter, M., Putz, M. 2017. Requirements and Tasks for Active Energy Management Systems in Automotive Industry, Procedia Manufacturing, 8, 175-182. DOI: 10.1016/j.promfg.2017.02.022.
  • 15.Hines, P., Taylor, D. 2000, Going Lean, Lean Enterprise Research Centre, Cardiff, UK.
  • 16.Ingaldi, M., Czajkowska, A. 2019. Segregation and recycling of packaging waste in central Poland, IOP Conference Series: Earth and Environmental Science, 214(1):012003. DOI: 10.1088/1755-1315/214/1/012003
  • 17.Ingaldi, M., Klimecka-Tatar, D. 2020. People’s Attitude to Energy from Hydrogen - From the Point of View of Modern Energy Technologies and Social Responsibility, Energies,13, 6495. DOI:10.3390/en13246495
  • 18.ISO 14006:2011 - Environmental Management Systems - Guidelines for Incorporating Ecodesign, 2011.
  • 19.Kafa, N., Hani, Y., Mhamedi, A., 2013. Sustainability Performance Measurement for Green Supply Chain Management, IFAC Proceedings Volumes, 46(24), 71-78. DOI: 10.3182/20130911-3-BR-3021.00050.
  • 20.Kapustka, K., Ziegmann, G., Klimecka-Tatar, D., Ostrega, M. 2020. Identification of health risks from harmful chemical agents -review concerning bisphenol A in workplace, Production Engineering Archives, 26(2), 45- 49. DOI: 10.30657/pea.2020.26.10
  • 21.Kishawy, H.A., Hegab, H., Saad, E., 2018. Design for Sustainable Manufacturing: Approach, Implementation, and Assessment, Sustainability, 10(10), 3604. DOI: 10.3390/su10103604.
  • 22.Klimecka-Tatar, D, Ingaldi, M. 2020. How to indicate the areas for improvement in service process - the Knowledge Management and Value Stream Mapping as the crucial elements of the business approach, Revista Gestão & Tecnologia, 20(2), 52-74. DOI: 10.20397/2177- 6652/2020.v20i2.1878
  • 23.Kobayashi, S., Plotkin, S., Ribeiro, S.K.. 2009. Energy efficiency technologies for road vehicles, Energy Efficiency, 2(2), 125-137. DOI: 10.1007/s12053-008-9037-3
  • 24.Kuzman, M.K., Panwar, R., Zbašnik-Senegačnik, M. 2016. A preliminar characterization of eco-innovators and eco-design in Slovenia, Drvna industrija, 67(3), 289-298. DOI: 10.5552/drind.2016.1546
  • 25.Mamalis, A.G., Spentzas, K., Mamali, A.A. 2013. The impact of automotive industry and its supply chain to climate change: Somme techno-economic aspects, European Transport Research Review, 5(1). DOI: 10.1007/s12544-013-0089-x
  • 26.Mayyas, A.; Qattawi, A.; Omar, M.; Shan, D. 2012. Design for sustainability in automotive industry: A comprehensive review, 2012, Renewable and Sustainable Energy Reviews, 16, 1845-1862. DOI: 10.1016/j.rser.2012.01.012.
  • 27.Nieuwenhuis, P., Katsifou, E. 2015. More sustainable automotive production through understanding decoupling points in leagile manufacturing, Journal of Cleaner Production, 95, 232-241. DOI: 10.1016/j.jclepro.2015.02.084
  • 28.Obrecht, M., Kazancoglu, Y., Denac, M. 2020. Integrating Social Dimensions into Future Sustainable Energy Supply Networks, Int. J. Environ. Res. Public Health, 17, 6230. DOI:10.3390/ijerph17176230
  • 29.Otola, I., Grabowska, M. 2009. Initial capital func-tions and possibilities of protecting them by re-sources capital, Evidence of polish joint-stock companies, International Research Journal of Fi-nance and Economics, 30, 190-210, http://ssrn.com/abstract=1815011.
  • 30.Pahlevani, F., Dippenaar, R., Gorjizadeh, N., Cholake, S.T., Hossain, R., Kumar, R., Sahajwalla, V. 2017. Surface Modification of Steel Using Automotive Waste as Raw Materials, Procedia Manufacturing, 7, 287-394. DOI: 10.1016/j.promfg.2016.12.007.
  • 31.Panza, G.B., Okano, M.T., Otola, I. 2019. Social enterprises in Brazil and Poland: Comparative analysis, International Journal of Supply Chain Management, 8(4), 990-996.
  • 32.Petit, S., 2017. World Vehicle Population Rose 4.6% in 2016, Wards Intelligence.
  • 33.Piechocka, K., Szeretucha, C., et al., 2018. Automotive Industry Report, 2018/2019.
  • 34.Plouffe, S., Lanoie, P., Berneman, P., Vernier, M.F., 2011. Economic benefits tied to ecodesign, Journal of Cleaner Production, 19, 573-579. DOI: 10.1016/j.jclepro.2010.12.003
  • 35.Robertson, J.G.S., Wood, J.R., Ralph, B., Fenn, R., 1997. Analysis of lead/acid battery life-cycle factors: their impact on society and the lead industry, Journal of Power Sources, 67(1-2), 225-236. DOI: 10.1016/S0378-7753(97)02554-8.
  • 36.Roth, R., Clark, J., Kelkar, A. 2001. Automobile bodies: can aluminium be an economical alternative to steel, JOM, 53(8), 28-32. DOI: 10.1007/s11837-001-0131-7.
  • 37.Roy, R. 1994. The evolution of ecodesign. Technovation, 14(6), 363-80. DOI: 10.1016/0166-4972(94)90016-7
  • 38.Sonoc, A., Jeswiet, J., Soo, V.K., 2015. Opportunities to Improve Recycling of Automotive Lithium Ion Batteries, Procedia CIRP, 29, 752-757. DOI: 10.1016/j.procir.2015.02.039.
  • 39.Szegedi, Z., Gabriel, M., Papp, I. 2017. Green supply chain awareness in the hungarian automotive industry, Polish Journal of Management Studies 16 (1), 259-268. DOI: 10.17512/pjms.2017.16.1.22.
  • 40.Tisza, M., Czinege, I., 2018. Comparative study of the application of steels and aluminium in lightweight production of automotive parts, International Journal of Lightweight Materials and Manufacture, 1(4), 229-238. DOI: 10.1016/j.ijlmm.2018.09.001.
  • 41.Ulewicz, R., Blaskova, M., 2018. Sustainable development and knowledge management from the stakeholders' point of view, Polish Journal of Management Studies, 18(2), 363-374, DOI: 10.17512/pjms.2018.18.2.29
  • 42.Ulewicz, R., Mazur, M., 2019. Economic Aspects of Robotization of Production Processes by Example of a Car Semi-trailers Manufacturer, Manufacturing Technology, 19(6),1054-1059. DOI: 10.21062/ujep/417.2019/a/1213-2489/MT/19/6/1054
  • 43.Urban, W., 2019. TOC implementation in a medium-scale manufacturing system with diverse product rooting, Production and Manufacturing Research, 7(1), 178-194.
  • 44.Venkatachalam, V., Spierling, S., Endres, H.J., Siebert-Raths, A., 2018. Integrating Life Cycle Assessment and Eco-design Strategies for a Sustainable Production of Bio-based Plastics, In: Designing Sustainable Technologies, Products and Policies. DOI: 10.1007/978-3-319-66981-6_54
  • 45.Viganò, F., Consonni, S., Grosso, M., Rigamonti, L., 2010. Material and energy recovery from Automotive Shredded Residues (ASR) via sequential gasification and combustion, Waste management, 30(1), 145-153. DOI: 10.1016/j.wasman.2009.06.009
  • 46.Vinodh, S., Jayakrishna, K. 2011. Environmental impact minimisation in an automotive component using alternative materials and manufacturing processes, Materials & Design, 32(10), 5082-5090. DOI: 10.1016/j.matdes.2011.06.025.
  • 47.Yuce, K., Karpat, F., Yavuz, N. 2014. A Case Study: Designing for Sustainability and Reliability in an Automotive Seat Structure, Sustainability, 6(7), 4608-4631. DOI: 10.3390/su6074608
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8775259a-3d68-4ecc-aacf-64a5261c031c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.