PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recovery of nickel and iron from low–grade laterite ore and red mud using co–reduction roasting: Industrial-scale test

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the effects of red mud (RM) dosage during the co-reduction roasting of lowgrade laterite ore and RM were investigated. The expanded test was conducted under the following optimized conditions: RM-1 dosage of 15 wt%, anthracite dosage of 13 wt%, a roasting temperature of 1300oC, and roasting time of 3 h. Ferronickel powder was obtained with a nickel grade of 1.95 wt%, iron grade of 83.25 wt%, and nickel and total iron recoveries of 94.71 wt% and 95.98 wt%, respectively. The addition of RM improved the recovery of nickel and total iron in ferronickel powder. The reason was because of the increased intensity of the diffraction peaks of kamacite and iron, and the ferronickel particles grown due to the liquid phase were easier to achieve at a lower melting point. The industrialscale test results showed that ferronickel powder was obtained with average nickel and total iron grades of 1.76 wt% and 86.46 wt%, respectively, which indicated the successful industrial-scale test of co–reduction roasting. Thermodynamic analysis theoretically illustrated the feasibility of the co–reduction of low-grade laterite ore and RM. Increased roasting temperature promoted the reduction of iron oxide and nickel oxide.
Rocznik
Strony
61--72
Opis fizyczny
Bibliogr. 36 poz., rys. kolor.
Twórcy
  • School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, P.R. China
autor
  • School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, P.R. China
  • School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, P.R. China
autor
  • School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, P.R. China
autor
  • School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, P.R. China
Bibliografia
  • AKCIL, A., AKHMADIYEVA, N., ABDULVALIYEV, R., ABHILASH, MESHRAM, P., 2018. Overview on extraction and separation of rare earth elements from red mud: focus on scandium. Min. Proc. Ext. Met Rev. 39(3), 145-151.
  • BABISK, M., AMARAL, L., RIBEIRO, L., VIEIRA, C., PRADO, U., Gadioli, M., Oliveira, M., Luz, F., Monteiro, S., Filho, F., 2020. Evaluation and application of sintered red mud and its incorporated clay ceramics as materials for building construction. J. Mater. Res. 9(2), 2186-2195.
  • BRUNORI, C., CREMISINI, C., MASSANISSO, P., PINTO, V., TORRICELLI, L., 2005. Reuse of a treated red mud bauxite waste: studies on environmental compatibility. J. Hazard. Mater. 117 (1), 55-63.
  • DING, W., XIAO, J., PENG, Y., SHEN, S., CHEN, T., ZOU, K., WANG, Z., 2020. A novel process for extraction of iron from a refractory red mud. Probl. Miner. Process. 56(6), 125-136.
  • GAO, C., YANG, G., WANG, D., GONG, Z., ZHANG, X., WANG, B., PENG, Y., LI, J., LU, C., CRITTENDEN, J., 2020. Modified red mud catalyst for the selective catalytic reduction of nitrogen oxides: Impact mechanism of cerium precursors on surface physicochemical properties. Chemosphere. 257(C.).
  • GAO, F., ZHANG, J., DENG, X., WANG, K., HE, C., LI, X., WEI, Y., 2019. Comprehensive Recovery of Iron and Aluminum from Ordinary Bayer Red Mud by Reductive Sintering–Magnetic Separation–Digesting Process. JOM. 71(9), 2936-2943.
  • GUO, Z., PAN, J., ZHU, D., ZHANG, F., 2018. Co-reduction of Copper Smelting Slag and Nickel Laterite to Prepare FeNi-Cu Alloy for Weathering Steel. JOM. 70 (2), 150-154.
  • JAVANSHIR, S., HEIDARI MOFRAD, Z., AZARGOON, A., 2018. Atmospheric pressure leaching of nickel from a lowgrade nickel-bearing ore. Probl. Miner. Process. 54(3), 890-900.
  • JIANG, M., SUN, T., LIU, Z., KOU, J., LIU, N., ZHANG, S., 2013. Mechanism of sodium sulfate in promoting selective reduction of nickel laterite ore during reduction roasting process. Int J Miner Process.123, 32-38.
  • KIRWAN, L., HARTSHORN, A., MCMONAGLE, J., FLEMING, L., FUNNELL, D., 2013. Chemistry of bauxite residue neutralisation and aspects to implementation. Int J Miner Process. 119, 40-50.
  • KLAUBER, C., GRAFE, M., POWER, G., 2011. Bauxite residue issues: II. Options for residue utilization. Hydrometallurgy. 108 (1), 11-32.
  • LI, G., LUO, J., PENG, Z., ZHANG, Y, RAO, M., and JIANG, T.,2015. Effect of quaternary basicity on melting behavior and ferronickel particles growth of saprolitic laterite ores in Krupp–Renn process, ISIJ Int., 55(9), 1828-1833.
  • LI, J., CHEN, Z., SHEN, B., XU, Z., ZHANG, Y., 2017. The extraction of valuable metals and phase transformation and formation mechanism in roasting-water leaching process of laterite with ammonium sulfate. J. Clean. Prod. 140, 1148-1158.
  • LI, J., XU, Z., WANG, R., GAO, Y., YANG, Y., 2019. Study on leaching kinetics of laterite ore using hydrochloric acid. Physicochem. Probl. Miner. Process. 55(3), 711-720.
  • LIU, W., YANG, J., XIAO, B., 2009. Review on treatment and utilization of bauxite residues in China. Int J Miner Process. 93, 220-231.
  • LU, J., LIU, S., SHANGGUAN, J., DU, W., PAN, F., YANG, S., 2013. The effect of sodium sulphate on the hydrogen reduction process of nickel laterite ore. Miner. Eng. 49, 154-164.
  • MISHRA, T., SINGH, N., SINGH, N., 2017. Restoration of red mud deposits by naturally growing vegetation. Int. J. Phytoremediat. 19(5), 439-445.
  • PANDA, I., JAIN, S., DAS, S., JAYABALAN, R., 2017. Characterization of red mud as a structural fill and embankment material using bioremediation. Int. Biodeter. Biodegr. 119, 368-376.72 Physicochem. Probl. Miner. Process., 57(3), 2021, 61-72
  • POUMADERI, S., KESKINKILIF, E., GEVECI, A., TOPKAYA, A.Y., 2014. Reducibility of nickeliferous limonitic laterite ore from Central Anatolia. Can. Metall. Quart.. 53 (1), 26-37.
  • POWER, G., GRAFE, M., KLAUBER, C., 2011. Bauxite residue issues: I. Current management, disposal and storage practices. Hydrometallurgy. 108 (1), 33–45.
  • QUAST, K., OTSUKI, A., FORNASIERO, D., ROBINSON, J.D., ADDAI-MENSAH, J., 2015, Preconcentration strategies in the processing of nickel laterite ores part3: Flotation testing. Miner. Eng. 79, 279-286.
  • RAO, M., LI, G., JIANG, T., LUO, J., ZHANG, Y., FAN, X., 2013. Carbothermic Reduction of Nickeliferous Laterite Ores for Nickel Pig Iron Production in China: A Review. JOM. 265 (11), 1573-1583.
  • SADOWSKI, Z., PAWLOWSKA, A., 2017. Influence of chemical and biogenic leaching on surface area and particle size of laterite ore. Physicochem. Probl. Miner. Process. 53(2), 869-877.
  • TANEEZ, M., HUREL, C., 2019. A review on the potential uses of red mud as amendment for pollution control in environmental media. Environ. Sci. Pollut. R. 26(22), 22106-22125.
  • TONG, L., KLEIN, B., ZANIN, M., QUAST, K., SKINNER, W., ADDAI-MENSAH, J., ROBINSON, D., 2013. Stirred milling kinetics of siliceous goethitic nickel laterite for selective comminution. Miner. Eng. 49, 109-115.
  • WANG, X., SUN, T., CHEN, C., KOU, J., 2018a. Effects of Na2SO4 on iron and nickel reduction in a high-iron and lownickel laterite ore. Int. J. Min. Met. Mater. 25 (4), 383-390.
  • WANG, X., SUN, T., KOU, J., LI, Z., TIAN, Y., 2018b. Feasibility of co-reduction roasting of a saprolitic laterite ore and waste RM. J. Int. J. Min. Met. Mater. 25(06), 591-597.
  • WANG, X., SUN, T., WU, S., CHEN, C., KOU, J., XU, C., 2019. A novel utilization of Bayer red mud through co-reduction with a limonitic laterite ore to prepare ferronickel. J. Clean. Prod. 216, 33-41.
  • WANG, X., SUN, T., WU, S., HU, T., RONG, L., 2020. Effects and mechanism of Bayer red mud on co-reduction with a saprolitic laterite ore to prepare ferronickel. Physicochem. Probl. Miner. Process. 56(4), 641-652.
  • XUE, S., KONG, X., ZHU, F., HARTLEY, W., LI, X., LI, Y., 2016a. Proposal for management and alkalinity transformation of bauxite residue in China. Environ. Sci. Pollut. R. 23 (13), 12822-12834.
  • XUE, S., ZHU, F., KONG, X., WU, C., HUANG, L., HUANG, N., HARTLEY, W., 2016b.A review of the characterization and revegetation of bauxite residues (RM). Environ. Sci. Pollut. R. 23 (2):1120-1132.
  • YANG, Y., WANG, X., WANG, M., WANG, H., Xian, P., 2015. Recovery of iron from red mud by selective leach with oxalic acid. Hydrometallurgy. 157, 239-245.
  • YU, W., SUN, T., KOU, J., WEI, Y., XU, C., LIU, Z., 2013.The function of Ca(OH)2 and Na2CO3 as additive on the reduction of high-phosphorus oolitic hematite-coal mixed pellets. ISIJ Int. 53(3), 427-433.
  • ZENG,H., LYU, F., SUN,W., ZhANG, H., WANG, Y., WANG,Y., 2020. Progress on the Industrial Applications of Red Mud with a Focus on China. Minerals. 10 (9), 773-800.
  • ZHANG, Y., CUI, K., WANG, J., WANG, X., QIE, J., XU, Q., QI, Y., 2020. Effects of direct reduction process on the microstructure and reduction characteristics of carbon-bearing nickel laterite ore pellets. Powder Technol. 376, 496-506.
  • ZHANG, Y., ZHAO, J., MA, X., LI, M., lV, Y., GAO, X., 2019. Isothermal reduction kinetics and mechanism of pre-oxidized Ilmenite. Min. Metall. Explor. 36, 825–837
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8772fb1b-1bb1-4589-98b8-7101417778a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.