PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Environmental Aspects of Using Bacillus Subtilis to Improve the Quality of Irrigation Water

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Сurrently, the scientific research for methods to restore the quality of superficial water, including irrigation water, is actively advancing. The use of preparations of microbiological for intensification of the water system process purification is becoming increasingly common. In this aspect, it is advisable to expand the scientific search for the environmentally safe means of superface water purification in order to get quality irrigation water through the use of Bacillus subtilis microorganisms. Therefore, there is a need to investigate the environmental aspects of using Bacillus subtilis microorganisms in order to improve the quality of water, in particular, irrigation water. The aim of the research is to investigate the possibility of using Bacillus subtilis microorganisms to diminish the phytotoxicity of irrigation water. The water samples were tested before and after treatment with microorganisms (Bacillus subtilis) according to chemical indicators at the first stage. The treatment effiectiveness was as follows: BOI5–40%, suspended solids–26%, COD–37%, nitrite–54%, ammonium nitrogen–38%, manganese and lead–56%, nitrate–35%. After treatment with Bacillus subtilis, the water quality met the MPC norms for fisheries. At the next stage, the phytotoxic effect of the observed water samples before and after the treatment with Bacillus subtilis microorganisms (1:100 dilution) on germination of seeds, growth and root system of plants, was assessed. The effect of reducing toxicity was: root weight from 4% to 50%, with the least effect observed in the least polluted sample; root length from 48% to 65%, with the biggest effect observed in the most polluted water sample; length of aboveground part from 21% to 54%, without a connection to pollution in this case; weight of aboveground part from 25% to 46%, without a connection to pollution. The research found that after probiotic treatment, all water samples were classified as non-toxic by all biometric parameters. Definition the phytotoxicity of the roots, a clear correlation was observed between the increase in treatment effectiveness of Bacillus subtilis microorganisms and the increase in pollution levels. Thus, the effectiveness of using Bacillus subtilis microorganisms in order to reduce water phytotoxicity and improve irrigation water quality was found.
Rocznik
Strony
218--225
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
  • Institute of Agrotechnology, Breeding and Ecology, Department of Ecology, Sustainable Nature Management and Environmental Protection, 1/3, Skovorody St., 36000, Poltava, Ukraine
  • Institute of Agrotechnology, Breeding and Ecology, Department of Ecology, Sustainable Nature Management and Environmental Protection, 1/3, Skovorody St., 36000, Poltava, Ukraine
  • Institute of Agrotechnology, Breeding and Ecology, Department of Ecology, Sustainable Nature Management and Environmental Protection, 1/3, Skovorody St., 36000, Poltava, Ukraine
  • Uman National University of Horticulture, Faculty of Horticulture, Ecology and Plant Protection, Department of Plant Protection and Quarantine, 1, Instytutska str., 20305, Uman, Ukraine
autor
  • Institute of Agrotechnology, Breeding and Ecology, Department of Ecology, Sustainable Nature Management and Environmental Protection, 1/3, Skovorody St., 36000, Poltava, Ukraine
  • Institute of Agrotechnology, Breeding and Ecology, Department of Ecology, Sustainable Nature Management and Environmental Protection, 1/3, Skovorody St., 36000, Poltava, Ukraine
  • Institute of Agrotechnology, Breeding and Ecology, Department of Ecology, Sustainable Nature Management and Environmental Protection, 1/3, Skovorody St., 36000, Poltava, Ukraine
  • Institute of Agrotechnology, Breeding and Ecology, Department of Ecology, Sustainable Nature Management and Environmental Protection, 1/3, Skovorody St., 36000, Poltava, Ukraine
Bibliografia
  • 1. Anjaneyulu, Y., Chary, N.S. and Raj, D.S.S. 2005. Decolourization of industrial effluents-available methods and emerging technologies. Reviews in Environmental Science and Biotechnology, 4, 245273. http://dx.doi.org/10.1007/s11157-005-1246-z
  • 2. Chelliapan, S., Wilby, T., Sallis, P.J. 2006. Performance of an up-flow anaerobic stage reactor (UASR) in the treatment of pharmaceutical wastewater containing macrolide antibiotics. Water research, 40(3), 507–516. https://doi.org/10.1016/j.watres.2005.11.020
  • 3. Cloern, J.E. 2001. Our evolving conceptual model of the coastal eutrophication problem. In Marine Ecology Progress Series 210, 223–253. https://doi.org/10.3354/meps210223
  • 4. DSTU 2730:2015 Environmental protection. Quality of natural water for irrigation. Agronomic criteria. National standard of Ukraine. Available at: https://zakon.isu.net.ua/sites/default/files/normdocs/1-10395-zahyst_dovkillya._yakist_pryrodnoyi_vody_dlya_zroshen.pdf
  • 5. DSTU 7286:2012. Quality of natural water for irrigation. Environmental criteria. National standard of Ukraine. Available at: http://shop.uas.org.ua/ua/katalog-normativnih-dokumentiv/13-zakhystdovkillya-ta-zdorovya-bezpeka/jakist-prirodnoivodi-dlja-zroshuvannja-ekologichni-kriterii.html
  • 6. Ferreira, J.G., Andersen, J.H., Borja, A., Bricker, S.B., Camp, J., Cardoso da Silva, M., Garcés, E., Heiskanen, A. S., Humborg, C., Ignatiades, L., Lancelot, C., Menesguen, A., Tett, P., Hoepffner, N., Claussen, U. 2011. Overview of eutrophication indicators to assess environmental status within the European Marine Strategy Framework Directive. Estuarine, Coastal and Shelf Science, 93(2). https://doi.org/10.1016/j.ecss.2011.03.014
  • 7. Galytska, M., Kulyk, M., Rakhmetov, D., Kurylo, V., Rozhko, I. 2021. Effect of cultivation method of panicum virgatum and soil organic matter content on the biomass yield. Zemdirbyste, 108(3). https://doi.org/10.13080/z-a.2021.108.032
  • 8. Generalized list of maximum permissible concentrations (MPC) and tentatively safe levels (TSL) of harmful substances for the water of water management reservoirs. 1995. Available at: https://zakon.rada.gov.ua/laws/show/z0162-95#Text
  • 9. Hrytsaienko Z.M., Hrytsaienko A.O., Karpenko V.P. 2003. Metody biolohichnykh ta ahrokhimichnykh doslidzhen roslyn i gruntiv [Methods of biological and agrochemical research of plants and soils]. CJSC «Nichlava». Kyiv. Available at: https://www.studmed.ru/gricayenko-zm-gricayenko-aokarpenko-vp-metodi-bologchnih-ta-agrohmchnihdosldzhen-roslin-runtv_ae60c9f3f20.html
  • 10. ISO 11269-2:2012. Soil quality — Determination of the effects of pollutants on soil flora — Part 2: Effects of contaminated soil on the emergence and early growth of higher plants. European standards, Germany. Available at: https://www.iso.org/standard/51382.html
  • 11. ISO 5664:1984. Water quality — Determination of ammonium — Distillation and titration method. European standards, Germany. Available at: https://www.iso.org/standard/11757.html
  • 12. ISO 5667-11:1993.Water quality — Sampling — Part 11: Guidance on sampling of groundwaters. European standards, Germany. Available at: https://www.iso.org/standard/11774.html
  • 13. ISO 5815-1:2019. Water quality — Determination of biochemical oxygen demand after n days (BODn) — Part 1: Dilution and seeding method with allylthiourea addition. European standards, Germany. Available at: https://www.iso.org/standard/69058.html
  • 14. ISO 6060:1989. Water quality — Determination of the chemical oxygen demand. European standards, Germany. Available at: https://www.iso.org/standard/12260.html
  • 15. ISO 6777:1984. Water quality — Determination of nitrite — Molecular absorption spectrometric method. European standards, Germany. Available at: https://www.iso.org/standard/13273.html)
  • 16. ISO 6777:1984. Water quality — Determination of nitrite — Molecular absorption spectrometric method. European standards, Germany. Available at; https://www.iso.org/standard/13273.html)
  • 17. ISO 7888:1985. Water quality — Determination of electrical conductivity. European standards, Germany. Available at: https://www.iso.org/standard/14838.html
  • 18. ISO 7890-3:1988 Water quality — Determination of nitrate — Part 3: Spectrometric method using sulfosalicylic acid. European standards, Germany. Available at: https://www.iso.org/standard/14842. html
  • 19. ISO 8288:1986. Water quality — Determination of cobalt, nickel, copper, zinc, cadmium and lead — Flame atomic absorption spectrometric methods. European standards, Germany. Available at: https://www.iso.org/standard/15408.html
  • 20. Korchahin, O.P. 2020. Scientific substantiation of regulating eutrophication processes of water objects (on the example of the Vorskla river). Bulletin of Poltava State Agrarian Academy, (3), 150–158. https://doi.org/10.31210/visnyk2020.03.16
  • 21. Kulyk M., Galytskaya M., Plaksiienko I., Kocherg A. Mishchenko O., 2020. Switchgrass and lupin as phytoremediation crops of contaminated soil. 20th International Multidisciplinary Scientific GeoConference SGEM 2020, 20(5.1): 779–786. https://doi.org/10.5593/sgem2020/5.1/s20.098
  • 22. List of regulatory documents that regulate water and soil quality requirements and regulatory and methodical documents that regulate the determination of the composition and properties of samples of environmental objects. № 242. 01.12.2007. Approved by order of the State Committee of Ukraine on Water Management. Available at: https://ep3.nuwm.edu.ua/2886/1/nd140%20zah.pdf
  • 23. Anjaneyulu, Y., Sreedhara Chary, N., Samuel Suman Raj, D. 2005. Decolourization of industrial effluents - Available methods and emerging technologies - A review. In Reviews in Environmental Science and Biotechnology, 4(4). https://doi.org/10.1007/s11157-005-1246-z
  • 24. Chelliapan, S., Wilby, T., Sallis, P.J. 2006. Performance of an up-flow anaerobic stage reactor (UASR) in the treatment of pharmaceutical wastewater containing macrolide antibiotics. Water Research, 40(3). https://doi.org/10.1016/j.watres.2005.11.020
  • 25. Cloern, J.E. 2001. Our evolving conceptual model of the coastal eutrophication problem. In Marine Ecology Progress Series, 210. https://doi.org/10.3354/meps210223
  • 26. Ferreira, J.G., Andersen, J.H., Borja, A., Bricker, S.B., Camp, J., Cardoso da Silva, M., Garcés, E., Heiskanen, A. S., Humborg, C., Ignatiades, L., Lancelot, C., Menesguen, A., Tett, P., Hoepffner, N., Claussen, U. 2011. Overview of eutrophication indicators to assess environmental status within the European Marine Strategy Framework Directive. Estuarine, Coastal and Shelf Science, 93(2). https://doi.org/10.1016/j.ecss.2011.03.014
  • 27. Galytska, M., Kulyk, M., Rakhmetov, D., Kurylo, V., Rozhko, I. 2021. Effect of cultivation method of panicum virgatum and soil organic matter content on the biomass yield. Zemdirbyste, 108(3). https://doi.org/10.13080/z-a.2021.108.032
  • 28. Milenko, O., Shevnikov, M., Solomon, Y., Rybalchenko, A., Shokalo, N. 2022. Influence of Foliar Top-Dressing on the Yield of Soybean Varieties. Scientific Horizons, 25(4). https://doi.org/10.48077/SCIHOR.25(4).2022.61-66
  • 29. Pisarenko, P.V, Samoylik, M.S., Korchagin, O.P. 2019. Phytotoxic assessment of sewage treatment methods in disposal sites. IOP Conference Series: Earth and Environmental Science, 341(1), 12002. https://doi.org/10.1088/1755-1315/341/1/012002
  • 30. Pysarenko, P., Samojlik, M., Galytska, M., Tsova, Y., Mostoviak, I. 2023. Influence of Bacillus subtilis on soil microbiocenosis. Ecological Questions, 34(2). https://doi.org/10.12775/EQ.2023.038
  • 31. Pysarenko, P., Samojlik, M., Galytska, M., Tsova, Y., Pischalenko, M. 2023. Agroecological characteristics of the effect of a mixture of probiotic preparations with concomitant formation water on soil microorganisms. Ecological Questions, 34(3). https://doi.org/10.12775/EQ.2023.033
  • 32. Pysarenko, P, Samojlik, M., Galytska, M., Tsova, Y., Kalinichenko, A., Bąk, M. 2022. Ecotoxicological assessment of mineralized stratum water as an environmentally friendly substitute for agrochemicals. Agronomy Research, 20(4), 785–792. https://doi.org/10.15159/AR.22.045
  • 33. Pysarenko, Pavlo, Samoilik, M., Taranenko, A., Tsova, Y., Sereda, M. 2021. Case study: Influence of probiotics-based products on phytopathogenic bacteria and fungi in agrocenosis. Agraarteadus, 32(2). https://doi.org/10.15159/jas.21.41
  • 34. Sannikova, N., Kovaleva, O. 2019. Use of probiotic preparations in waste waters cleaning of agricultural enterprises. KnE Life Sciences. https://doi.org/10.18502/kls.v4i14.5598
  • 35. Smith, V.H., Joye, S.B., Howarth, R.W. 2006. 63_Smith, Val H., Samantha B. Joye, and Robert W. Howarth. Eutrophication of freshwater and marine ecosystems. Limnol. Oceanogr., 51(1, part 2), 351–355. Limnol. Oceanogr, 51(2).
  • 36. Yang, X.E., Wu, X., Hao, H.L., He, Z.L. 2008. Mechanisms and assessment of water eutrophication. In Journal of Zhejiang University: Science B, 9(3). https://doi.org/10.1631/jzus.B0710626
  • 37. Oliferchuk, V.P., Hurla, U.R., Seniuk, A.I., Khodzinska, O.R. 2008. Zastosuvannia mikromitsetiv dlia ochyshchennia stichnykh vod za dopomohoiu biokonveiera [The use of micromycetes for wastewater treatment using a bioconveyor]. Scientific Bulletin of Ukrainian National Forestry University. Lviv, 183, 22–29. https://cyberleninka.ru/article/n/zastosuvannya-mikromitsetiv-dlya-ochischennyastichnih-vod-za-dopomogoyu-biokonveera/viewer
  • 38. Pisarenko, P.V, Samoylik, M.S., Korchagin, O.P. 2019. Phytotoxic assessment of sewage treatment methods in disposal sites. IOP Conference Series: Earth and Environmental Science, 341(1), 12002. https://doi.org/10.1088/1755-1315/341/1/012002
  • 39. Pysarenko, P, Samojlik, M., Galytska, M., Tsova, Y., Kalinichenko, A., Bąk, M. 2022. Ecotoxicological assessment of mineralized stratum water as an environmentally friendly substitute for agrochemicals. Agronomy Research, 20(4), 785792. https://doi.org/10.15159/AR.22.045
  • 40. Pysarenko, P.V., Samoilik, M.S., Dychenko, O.Yu., Sereda, M.S., Korchahin, О.Р. 2021b. Improving eutrophication regulation of water bodies by using biological methods. Bulletin of Poltava State Agrarian Academy, 2, 135–144. https://doi.org/10.31210/visnyk2021.02.16
  • 41. Pysarenko, Pavlo, Samoilik, M., Taranenko, A., Tsova, Y., Sereda, M. 2021. Case study: Influence of probiotics-based products on phytopathogenic bacteria and fungi in agrocenosis. Agraarteadus, 32(2). https://doi.org/10.15159/jas.21.41
  • 42. Pysarenko, P., Samojlik, M., Galytska, M., Tsova, Y., Pischalenko, M. 2023a. Agroecological characteristics of the effect of a mixture of probiotic preparations with concomitant formation water on soil microorganisms. Ecological Questions, 34(3), 1–15. https://doi.org/10.12775/EQ.2023.033
  • 43. Pysarenko, P., Samojlik, M., Galytska, M., Tsova, Y., Mostoviak, I. 2023 b. Influence of Bacillus subtilis on soil microbiocenosis. Ecological Questions, 34(2), 1–12. https://doi.org/10.12775/ EQ.2023.038
  • 44. Resolution of the Cabinet of Ministers of Ukraine No. 766. 09.02.2020 On standards for environmentally safe irrigation, drainage, irrigation and drainage management. Available at: https://zakon.rada.gov.ua/laws/show/766-2020-%D0%BF#Text
  • 45. Sannikova, N., Kovaleva, O. 2019. Use of probiotic preparations in waste waters cleaning of agricultural enterprises. KnE Life Sciences. https://doi. org/10.18502/kls.v4i14.5598
  • 46. Shevnikov, M., Milenko, O., Lotysh, I., Shevnikov, D., Shovkova, O. 2022. The effect of cultivation conditions on the nitrogen fixation and seed yield of three Ukrainian varieties of soybean. Scientific Horizons, 25(8), 17–27. https://doi.org/10.48077/scihor.25(8).2022.17-27
  • 47. Smith, V.H., Joye, S.B., Howarth, R.W. 2006. 63_ Smith, Val H., Samantha B. Joye, and Robert W. Howarth. Eutrophication of freshwater and marine ecosystems. Limnol. Oceanogr., 51(1, part 2), 351355. Limnol. Oceanogr.
  • 48. Taranenko, A., Kulyk, M., Galytska, M., Taranenko, S. 2019. Effect of cultivation technology on switchgrass (Panicum virgatum L.) productivity in marginal lands in Ukraine. Acta Agrobotanica, 72(3), 1–11. https://doi.org/10.5586/aa.1786
  • 49. Tomiltseva A.I., Yatsyk A.V., Mokin V.B. 2017. Ekolohichni osnovy upravlinnia vodnymy resursamy [Ecological foundations of water resources management]. Institute of Environmental Management and Balanced Nature Management. Kyiv. [in Ukrainian]. https://iem.org.ua/images/librery/4.pdf
  • 50. Yang, X.E., Wu, X., Hao, H.L., He, Z.L. 2008. Mechanisms and assessment of water eutrophication. In Journal of Zhejiang University: Science B, 9(3). https://doi.org/10.1631/jzus.B0710626
  • 51. Yatsyk A.V., Hryshchenko Yu.M., Volkova L.A., Pasheniuk I.A. 2007. Vodni resursy: vykorystannia, okhorona, vidtvorennia upravlinnia [Water resources: use, protection, reproduction of management]. Genesis. Kyiv. Available at: https://docplayer.net/55032648Vodni-resursi-vikoristannya-ohorona-vidtvorennyaupravlinnya-pidruchnik-dlya-studentiv-vishchihnavchalnih-zakladiv.html
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87729f44-7113-4047-9fcd-24ebced8e508
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.