PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of agglomerative and partitional algorithms for the study of the phenomenon of the collaborative economy within the tourism industry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research discusses the application of two different clustering algorithms (agglomerative and partitional) to a set of data derived from the phenomenon of the collaborative economy in the tourism industry known as Airbnb. In order to analyze this phenomenon, the algorithms are known as “hierarchical Tree” and “K-Means” were used with the objective of gaining a better understanding of the spatial configuration and current functioning of this complimentary lodging offer. The city of Guanajuato, Mexico was selected as the case for convenience purposes and the main touristic attractions were used as parameters to conduct the analysis. Cluster techniques were applied to both algorithms and the results were statistically compared.
Twórcy
  • Administrative Information Systems, DCEA-University of Guanajuato, Guanajuato, México
  • Organizational Studies Department, DCEA-University of Guanajuato, Guanajuato, México
  • Management and Business Management Department, DCEA-University of Guanajuato, Guanajuato, México
  • Organizational Studies Department, DCEA-University of Guanajuato, Guanajuato, México
  • Organizational Studies Department, DCEA-University of Guanajuato, Guanajuato, México
  • Organizational Studies Department, DCEA-University of Guanajuato, Guanajuato, México
Bibliografia
  • [1] D. Dredge and S. Gyimóthy, “The collaborative economy and tourism: Critical perspectives, questionable claims and silenced voices”, Tourism Recreation Research, vol. 40, no. 3, 2015, 286–302, DOI: 10.1080/02508281.2015.1086076.
  • [2] D. Dredge and S. Gyimóthy, “Collaborative Economy and Tourism”, 2017, 1–12, DOI: 10.1007/978-3-319-51799-5_1.
  • [3] “The Collaborative Economy”. J. Owyang, C. Tran and C. Silva, https://www.slideshare.net/altimeter/the-collaborative-economy. Accessed on: 2020-05-28.
  • [4] D. Dredge and Sz. Gyimóthy, “The collaborative economy and tourism: Critical perspectives, questionable claims and silenced voices”, Tourism Recreation Research, vol. 40, no. 3, 2015, 286–302, DOI: 10.1080/02508281.2015.1086076.
  • [5] N. Gurran and P. Phibbs, “When Tourists Move In: How Should Urban Planners Respond to Airbnb?”, Journal of the American Planning Association, vol. 83, no. 1, 2017, 80–92, DOI: 10.1080/01944363.2016.1249011.
  • [6] Annual Activities Report; Secretaria de Turismo del Estado de Guanajuato, SECTUR. 2018. https://sectur.guanajuato.gob.mx. Accessed on: 2020-06-24.
  • [7] G. Zervas, D. Proserpio and J. W. Byers, “The Rise of the Sharing Economy: Estimating the Impact of Airbnb on the Hotel Industry”, Journal of Marketing Research, vol. 54, no. 5, 2017, 687–705, DOI: 10.1509/jmr.15.0204.
  • [8] D. Guttentag, S. Smith, L. Potwarka and M. Havitz, “Why Tourists Choose Airbnb: A Motivation-Based Segmentation Study”, Journal of Travel Research, vol. 57, no. 3, 2018, 342–359, DOI: 10.1177/0047287517696980.
  • [9] J. MacQueen, “Some methods for classification and analysis of multivariate observations”. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, 1967, 281-297.
  • [10] A. K. Jain, “Data clustering: 50 years beyond K-means”, Pattern Recognition Letters, vol. 31, no. 8, 2010, 651–666, DOI: 10.1016/j.patrec.2009.09.011.
  • [11] W. H. E. Day and H. Edelsbrunner, “Efficient algorithms for agglomerative hierarchical clustering methods”, Journal of Classification, vol. 1, no. 1, 1984, 7–24, DOI: 10.1007/BF01890115.
  • [12] A. Bouguettaya, Q. Yu, X. Liu, X. Zhou and A. Song, “Efficient agglomerative hierarchical clustering”, Expert Systems with Applications, vol. 42, no. 5, 2015, 2785–2797.
  • [13] M. Garey, D. Johnson and H. Witsenhausen, “The complexity of the generalized Lloyd – Max problem (Corresp.)”, IEEE Transactions on Information Theory, vol. 28, no. 2, 1982, 255–256, DOI: 10.1109/TIT.1982.1056488.
  • [14] D. Guttentag, “Airbnb: disruptive innovationand the rise of an informal tourism accommodation sector”, Current Issues in Tourism, vol. 18, no. 12, 2015, 1192–1217, DOI: 10.1080/13683500.2013.827159.
  • [15] M. Charrad, N. Ghazzali, V. Boiteau and A.Niknafs, “NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set”, Journal of Statistical Software, vol. 61, no. 6, 2014, DOI: 10.18637/jss.v061.i06.
  • [16] D. Glez-Peña, A. Lourenço, H. López-Fernández, M. Reboiro-Jato and F. Fdez-Riverola, “Webscraping technologies in an API world”, Briefings in Bioinformatics, vol. 15, no. 5, 2014, 788–797, DOI: 10.1093/bib/bbt026.
  • [17] R. Guerrero Rodríguez, “Estudiando la relación del turismo con el desarrollo humano en destinos turísticos mexicanos”, Acta Universitaria, vol. 28, 2018, 01–06, DOI: 10.15174/au.2018.1886.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-877231cd-0d44-4184-9dde-c523b5dbd65b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.