PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surface morphology and optical properties of Al₂O₃ thin films deposited by ALD method

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The paper presents the results of investigations on the changes in surface morphology, roughness, and thickness of the prepared aluminium oxide thin films as dependent on conditions of the thin films preparation. Design/methodology/approach: Thin films have been prepared with use of atomic layer deposition (ALD) method. The changes of surface morphology have been observed in topographic images performed with the atomic force microscope (AFM). Obtained roughness parameters have been calculated with XEI Park Systems software. The thickness distribution have been measured with spectroscopic ellipsometry. The optical transmission spectra have been measured with UV-Vis spectrophotometry. Findings: Results and their analysis show that the atomic layer deposition method allows the deposition of homogenous thin films of Al2O3 with the desired geometric characteristics and good optical properties. Practical implications: The technology of atomic layer deposition of aluminium oxide thin films causes that mentioned thin films are good potential material for optics, optoelectronics and photovoltaics. Originality/value: The paper presents results of investigations on aluminum oxide thin films prepared with atomic layer deposition method on glass substrate.
Rocznik
Strony
18--24
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
  • Division of Materials Processing Technology and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Division of Materials Processing Technology and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Divsion of Metal and Polymer Materials Processing, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] L.A Dobrzański., A.D, Dobrzańska-Danikiewicz, The surface treatment of engineering materials, Open Access Library 5 (2011) 1-480.
  • [2] L.A Dobrzański., K. Lukaszkowicz, D. Pakuła, J. Mikuła, Corrosion resistance of multilayer and gradient coatings deposited by PVD and CVD techniques, Archives of Materials Science and Engineering 28/1 (2007) 12-18.
  • [3] L.A Dobrzański, D. Pakuła, A. Křiž, M. Soković, J. Kopač, Tribological properties of the PVD and CVD coatings deposited onto the nitride tool ceramics Journal of Materials Processing Technology 175/1 (2006) 179-185.
  • [4] L.A. Dobrzański, D. Pakuła, Comparison of the structure and properties of the PVD and CVD coatings deposited on nitride tool ceramics, Journal of Materials Processing Technology 164 (2005) 832-842.
  • [5] N. Pinna, M. Knez, Atomic Layer Deposition of Nanostructured Materials, Wiley-VCH, Weinheim, 2012.
  • [6] H.S. Nalwa, Handbook of thin film materials, Deposition and processing of thin films, Academic Press, San Diego, 2002.
  • [7] P.M. Martin, Handbook of deposition technologies for films and coatings - science, applications and technology, Elsevier Inc., United States, 2010.
  • [8] A.C. Jones, M.L. Hitchman, Chemical Vapour Deposition 'Precursors, Processes and Applications', The Royal Society of Chemistry, Great Britain, 2009.
  • [9] T. Suntola, J. Anlson, U.S. Patent 4.058.430, 1977.
  • [10] M. Leskela, M. Ritala, Atomic Layer Deposition (ALD): From Precursors to Thin Film Structures. Thin Solid Films 409 (2002) 138-139.
  • [11] O. Sneh, R. Phelps, et al., Thin Film Atomic Layer Deposition Equipment for Semiconductor Processing, Thin Solid Films 402 (2001) 248-252.
  • [12] A.W. Ott, J.W. Klaus, J.M. Johnson, S.M. George, Al2O3 Thin Film Growth on Si(100) Using Binary Reaction Sequence Chemistry, Thin Solid Films 292 (1997) 135.
  • [13] R De Almeida, I. Baumvol, Reaction-diffusion in high-k dielectrics on Si, Surface Science Reports 49 (2003) 1-114.
  • [14] M.D. Groner, J.W. Elam, F.H. Fabreguette, S.M. George, Electrical Characterization of Thin Al2O3 Films Grown by Atomic Layer Deposition on Silicon and Various Metal Substrates, Thin Solid Films 413/1-2 (2002) 186-197.
  • [15] R.L. Puurunen, Surface Chemistry of Atomic Layer Deposition: A Case Study for the Trimethylaluminum/ water Process, Journal of Applied Physics 97 (2005) 1-55.
  • [16] S.M. George, Atomic Layer Deposition: An Overview, Chemical Reviews 110/1 (2010) 111-131.
  • [17] P. Lichty, P. Kreider, O. Kilbury, D.M. King, A.W. Weimer, M. Wirz, A. Steinfeld, D. Dinair, Surface Modification of Graphite Particles Coated by Atomic Layer Deposition and Advances in Ceramic Composites, International Journal of Applied Ceramic Technology 10/2 (2013) 257-265.
  • [18] L.A. Dobrzański, M. Szindler, A. Drygała, M.M. Szindler, Silicon solar cells with Al2O3 antireflection coating, Central European Journal of Physics 12/9 (2014) 666-670.
  • [19] J. Aarik, H. Mändar, M. Kirm, L. Pung, Optical characterization of HfO2 thin films grown by atomic layer deposition, Thin Solid Films 466 (2004) 41-47.
  • [20] K. Kukli, M. Ritala, T. Sajavaara, J. Keinonen, M. Leskelä, Comparison of hafnium oxide films grown by atomic layer deposition from iodide and chloride precursors, Thin Solid Films 416 (2002) 72-79.
  • [21] J. Aarik, J. Sundqvist, A. Aidla, T. Sajavaara, J. Kukli, A. Harsta, Hafnium tetraiodide and oxygen as precursors for atomic layer deposition of hafnium oxide thin films, Thin Solid Films 418 (2002) 69-72.
  • [22] M. Ritala, M. Leskelä, Atomic layer epitaxy - a valueble tool for nanotechnology, Nanotechnology 10 (1999) 19-24.
  • [23] L.A. Dobrzański, M. Szindler, Al2O3 antireflection coatings for silicon solar cells, Journal of Achievements in Materials and Manufacturing Engineering 59/1 (2013) 13-19.
  • [24] LA Dobrzański, M Szindler, Sol-gel and ALD anti-reflection coatings for silicon solar cells, Electronic: construction, technology, application 53/8 (2012) 125-127.
  • [25] L.A. Dobrzański, A. Drygała, Influence of laser processing on polycrystalline silicon surface, Materials Science Forum 706 (829-834.
  • [26] A.D. Dobrzańska-Danikiewicz, A. Drygała, Strategic development perspectives of laser processing on polycrystalline silicon surface, Archives of Materials Science and Engineering 50/1 (5-20.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-877228bc-45f3-481d-a036-9386f1f00b3a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.