PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on the mechanism of controlling the morphology of basic magnesium carbonate prepared under different hydration conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Basic magnesium carbonate is gaining prominence in flame retardant materials due to its excellent flame-retardant properties and clean decomposition products. This study investigates a hydration-carbonation method to address challenges related to the preparation, morphology control, and stability of magnesium basic carbonate. The impact of hydration conditions on the morphology of the carbonate was analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results indicate that spherical magnesium basic carbonate with regular morphology and uniform particle size can be achieved at a hydration temperature of 50°C for 1.5 hours. However, extending the hydration time and increasing the temperature resulted in irregular morphologies. Molecular dynamics simulations using the CASTEP and Forcite modules of Materials Studio were employed to understand the influence of hydration-carbonation conditions on the carbonate's morphology. The simulations revealed that the (1 1 1) and (2 0 0) crystal faces of MgO, with higher surface energies, promote the formation of precursor magnesium hydroxide nuclei, leading to heterogeneous magnesium alkali carbonate at elevated temperatures. Prolonged hydration time resulted in fragmented carbonate structures. To control the morphology of magnesium alkali carbonate, it is essential to optimize hydration temperature and duration. The simulation results corroborate experimental findings, providing deeper insights into the liquid-gas-solid adsorption relationships during the carbonation process. This study offers valuable guidelines for the controlled synthesis of magnesium basic carbonate, enhancing its applicability in flame retardant materials.
Rocznik
Strony
art. no. 189757
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor
  • North China University of Science and Technology, Tangshan 063210, China
  • Collaborative Innovation Center for Green Development and Ecological Restoration of Mineral Resources, Tangshan 063210, China
autor
  • North China University of Science and Technology, Tangshan 063210, China
  • Collaborative Innovation Center for Green Development and Ecological Restoration of Mineral Resources, Tangshan 063210, China
autor
  • North China University of Science and Technology, Tangshan 063210, China
  • Collaborative Innovation Center for Green Development and Ecological Restoration of Mineral Resources, Tangshan 063210, China
autor
  • Shenyang University of Science and Technology, Shenyang 110159, China
Bibliografia
  • BOTHA, A., STRYDOM, C., 2001. Preparation of a magnesium hydroxy carbonate from magnesium hydroxide. Hydrometallurgy. Hydrometallurgy, 62(3), 175-183.
  • CHEN, J., HUANG, X, Y., HUANG, Z, L., 2016. Effect of different alkali sources on crystal form of basic magnesium carbonate. Material Protection. 49(S1), 196-197.
  • CHEN, M.M, YU-ZHU SUN, XING-FU SONG, ET AL, 2022. Study on the carbonization process of magnesium hydroxide[J]. Journal of East China University of Science and Technology (Natural Science Edition), 48(05), 600- 608.
  • CHEN, G, L., SONG, X, F., XU, Y, X., YU, J, G., 2017. Effects of NO3– and SO42– ions on the coupled reaction–extraction–crystallization process of MgCl2 and CO2. Ind. Eng. Chem. Res. 56 (2017) 7100−7108
  • CHEN, Y., Huang, X, Y., 2016. Effect of different alkali sources on the crystal shape of basic magnesium carbonate. Materials Protection.
  • CHENG W, T., FANG, L., CHENG, H, G., 2019. Formation of MgCO3•3H2O in the CO2 mineralization system using Mg(OH)2 as an intermediate at 20 ℃. Journal of Industrial and Engineering Chemistry, 76, 215-222.
  • H.T. SCHAEF., C.F. WINDISCH JR., B.P. MCGRAIL., P.F. MARTIN., K.M. ROSSO., 2011. Brucite [Mg(OH)2] carbonation in wet supercritical CO2: an in situ high-pressure X-ray diffraction study. Geochim. Cosmochim. Ac. 75 (2011) 7458−7471.
  • HUANG J, C., LIN, G, S., ZONG, J. et al, 2021. Exploration of new process conditions for the preparation of highly dispersed hexagonal flake nano-magnesium hydroxide from hydromagnesite. Inorganic Salt Industry, 53(02), 55-60.
  • LI, J., YANG, Y., LUO, X., 2012. First-principles study of the Al(001)/Al3 Ti(001) interfacial properties. Computational Materials Science, 62.
  • KYUNGIL, C., YERYEONG, K., SUKBYUNG, C., 2023. Forced Mineral Carbonation of MgO Nanoparticles Synthesized by Aerosol Methods at Room Temperature. Nanomaterials, 13(2) :281-281.
  • LIU, B, Y., ZHOU, X, T., CUI X, S, TANG, J., 1989. Synthesis of MgCO_3-5H_2O crystals and study of its crystal structure. Chinese Science (Series B Chemistry Life Science Geology) (12),1302-1308.
  • MITSUHASHI, K.,TAGAMI, N.,TANABE, K.,2005,et al.Synthesis of microtubes with a surface of " house of cards" structure via needlelike particles and control of their pore size. Langmuir,21(8), 3659-3663.
  • REFSON, K., WOGELIUS, R.A., FRASER, D.G., PAYNE, M.C., LEE, M., MILMAN, V., 1995. Water chemisorption and reconstruction of the MgO surface. Physical review. B, Condensed matter, 52 15, 10823-10826.
  • SATO, T., Y, S, I, N., 2020.Hydrothermal carbon dioxide fixation in magnesium hydroxide and serpentine: Effects of temperature and pH.The Journal of Supercritical Fluids(prepublish),105071-.
  • STEFÁNSSON, A., LEMKE, H, K., BÉNÉZETH, P., ET AL, 2017. Magnesium bicarbonate and carbonate interactions in aqueous solutions: An infrared spectroscopic and quantum chemical study. Geochimica et Cosmochimica Acta. 198.
  • SUN, B, C., ZHOU H, J., MOSES A., J, M., CHEN, J, F., CHEN L, S., 2015. Preparation of basic magnesium carbonate by simultaneous absorption of NH 3 and CO 2 into MgCl2 solution in an RPB. Powder Technology, 57-62.
  • V.R. CHOUDHARY, M.Y. PANDIT, 1991.Surface properties of magnesium oxide obtained from magnesium hydroxide: Influence on preparation and calcination conditions of magnesium hydroxide. Applied Catalysis, 71: 265-274.
  • WANG, D., 2020, Hydration preparation and hydrophobic properties of two-dimensional nano-magnesium hydroxide. North China University of Science and Technology.
  • WANG, Y,L., 2015. Preparation and application study of micro/nano hydrated magnesium carbonate. Northeastern University.
  • WANG, Y, L., YIN W, Z., LI, C., et al, 2020. Surface organic modification and property characterization of basic magnesium carbonate. Journal of the Chinese Ceramic Society. 48(01),120-127.
  • WU, S, N., T, B, T, S, Hasanthi L., W, P., 2021. Polarization of CO2 for improved CO2 adsorption by MgO and Mg(OH)2. Applied Surface Science. 562.
  • YANG, F., FANG, X, H., ZENG, F, G., et al,2020. Simulation calculation of adsorption of lead and cadmium on kaolinite surface. Comprehensive utilization of minerals, (05), 196-202+100.
  • YU, L, L., LIU, J, X., QU, W, W., 2023. Molecular simulation of O2 adsorption behavior on Ag surface. Special Casting and Nonferrous Alloys, 43(11), 1447-1451.
  • YUAN, Q., LU, Z., ZHANG, P., ET AL., 2015. Study of the synthesis and crystallization kinetics of magnesium hydroxide. Materials Chemistry and Physics, 162734-742.
  • ZHAI, X, L., ZHOU, X, T., LIU, B, N., ET AL, 1996. The influence of the crystallinity and particle size of Mg(OH)2 on carbonation III. Research on the mechanism of carbonation reaction. Inorganic Salt Industry. (06), 9-11.
  • ZHANG, D., ZHANG, P., SONG, S., ET AL., 2014. Simulation of magnesium hydroxide surface and interface. Journal of Alloys and Compounds, 612315-322.
  • ZHANG, H., XU, Z., CHEN, D., BO, H., ZHOU, Q., CHEN, S., LI, S., SUN, W., ZHANG, C., 2021. Adsorption mechanism of water molecules on hematite (1 0 4) surface and the hydration microstructure. Applied Surface Science, 550, 149328.
  • ZHANG, W., TANG, B., 2008. Stability of MgO(111) Polar Surface: Effect of the Environment. Journal of Physical Chemistry C, 112, 3327-3333.
  • ZHANG, L, L., LIU, J, X., L, M., 2008. Effects of different pyrolysis conditions on the morphology of basic magnesium carbonate crystals (In English). Journal of Silicate. No. 233(09), 1310-1314.
  • ZHAO, B., MA, X, Q., BAI, Y., et al., 2017. Study on the reaction of magnesium sulfate with sodium carbonate to prepare basic magnesium carbonate. Inorganic salt industry, 49(09), 21-25.
  • ZHAO, W., HAN B., JAKOBSSON, K., ET AL., 2016. Mathematical model of precipitation of magnesium carbonate with carbon dioxide from the magnesium hydroxide slurry. Computers and Chemical Engineering, 87180-189.
  • ZHAO, Z, Y., LI X, G., WANG S. R., XIAO, Y., 2014. Study on the preferential growth conditions of hexagonal lamellar magnesium hydroxide (001) crystal faces. Journal of Artificial Crystals, 43(07), 1611-1619.
  • ZHU, C., WANG, H., Li, G, 2017. CO2 Absorption and Magnesium Carbonate Precipitation in MgCl2–NH3–NH4Cl Solutions: Implications for Carbon Capture and Storage. Minerals, 7(9), 172.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87659018-05e4-49e4-8fcd-6be3efd250c2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.