Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Electromagnetic forces generated by the short circuit current and leakage flux in low- and high-voltage windings of distribution transformers as well as amorphous core transformers will cause the translation, destruction, and explosion of the windings. Thus, the investigation of these forces plays a significant role for researchers and manufacturers. Many authors have recently used the finite element method to analyze electromagnetic forces. In this paper, an analytic model is first developed for magnetic vector potential formulations to compute the electromagnetic forces (i.e., axial and radial forces) acting on the low- and high-voltage windings of an amorphous core transformer. The finite element technique is then presented to validate the results obtained from the analytical model. The developed model is applied to an actual problem.
Czasopismo
Rocznik
Tom
Strony
521--539
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wz.
Twórcy
autor
- Faculty of Engineering and Technology, Quy Nhon University Binh Dinh province, Vietnam
autor
- Faculty of Engineering and Technology, Quy Nhon University Binh Dinh province, Vietnam
autor
- Faculty of Engineering and Technology, Quy Nhon University Binh Dinh province, Vietnam
Bibliografia
- [1] Harry W. N., Hasegawa R., Albert L., Lowdermilk L. A., Amorphous Alloy Core Distribution Transformers, Proceedings of the IEEE, vol. 79, no. 11, pp. 1608–1623 (1991), DOI: 10.1109/5.118984.
- [2] Steinmetz T., Cranganu-Cretu B., Smajic J., Investigations of no-load and load losses in amorphous core dry-type transformers, The XIX International Conference on Electrical Machines – ICEM 2010, pp. 1–6 (2010), DOI: 10.1109/ICELMACH.2010.5608162.
- [3] De Azevedo A. C., Delaiba A. C., De Oliveira J. C., Carvalho B. C., Herivelto de Souza Bronzeado, Transformer mechanical stress caused by external short-circuit: a time domain approach, Presented at the International Conference on Power Systems Transients (IPST’07) in Lyon, France (2007), https://www.scribd.com/document/285008792/2007.
- [4] Bahmani M. A., Core Loss Calculation in Amorphous High Frequency High Power Transformers with Different Topologies, Master of Science Thesis in Electric Power Engineering – Chalmers University of Technology Sweden, pp. 1–65 (2011), https://odr.chalmers.se/handle/20.500.12380/142830.
- [5] Ahn H. M., Oh Y. H., Kim J. K., Song J. S., Hahn S.C., Experimental Verification and Finite Element Analysis of Short-Circuit Electromagnetic Force for Dry-Type Transformer, IEEE Transactions on Magnetics, vol. 48, no. 2, pp. 819–822 (2012), DOI: 10.1109/TMAG.2011.2174212.
- [6] Marcel Dekler, Transformer Engineering Design and Practice – Chapter 6: Short Circuit Stresses and Strength, ISBN: 0-8247-5653-3, pp. 231–275 (2000).
- [7] Hyun Mo Ahn, Byuk-jin Lee, Cheri-jin Kim, Heung-kyo Shin, Sung-chin Hahn, Finite Element Modeling of Power Transformer for Short-circuit Electromagnetic Force Analysis, International Conference on Electrical Machines and Systems, INSPEC Accession Number: 13247968, vol. 15, pp. 5–8 (2012).
- [8] Zakrzewski K., Tomczuk B., Koteras D., Simulation of forces and 3-d field arising during power autotransformer fault due to electric arc in HV winding, IEEE Transactions on Magnetics, vol. 38, no. 2, pp. 1153–1156 (2002), DOI: 10.1109/20.996295.
- [9] Allahbakhsi M., Abbaszadeh K., Akbari A., Effect of asymmetrical dimensions in short circuit forces of power transformers, IEEE International Conference on Electrical Machines and Systems, vol. 3, no. 1, pp. 1746–1749 (2005), DOI: 10.1109/ICEMS.2005.202858.
- [10] Feyzi M. R., Sabahi M., Finite element analyses of short circuit forces in power transformers with asymmetric conditions, 2008 IEEE International Symposium on Industrial Electronics, no. 1, pp. 576–581 (2008), DOI: 10.1109/ISIE.2008.4677272.
- [11] Sinha A., Kaur S., Analysis of short circuit electromagnetic forces in transformer with asymmetrically placed windings using Finite Element Method, 2016 Second International Innovative Applications of Computational Intelligence on Power, Energy and Controls with their Impact on Humanity (CIPECH), pp. 101–105 (2009), DOI: 10.1109/CIPECH.2016.7918746.
- [12] Sharifian M. B. B., Esmaeilzadeh R., Farrokhifar M., Faiz J., Ghadimi M., Ahrabian G., Computation of a Single-phase Shell-Type Transformer Windings Forces Caused by Inrush and Short-circuit Currents, Journal of Computer Science, vol. 4, no. 1, pp. 51–58 (2008), DOI: 10.3844/jcssp.2008.51.58.
- [13] Kashtiban A. M., Vahedi A., Halvaei A., Investigation of Winding Type Effect on Leakage Flux of Single Phase Shell Type Transformer Using FEM, International Conference on Electrical Machines and Systems, pp. 1755–1758 (2005), DOI: 10.1109/ICEMS.2005.202860.
- [14] Zakrzewski K., Tomczuk B., Koteras D., Amorphous modular transformers and their 3D magnetic fields calculation with FEM, The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 28, no. 3, pp. 583–592 (2009), DOI: 10.1108/03321640910950034.
- [15] Zhang H., Yang B., Xu W., Wang S., Wang G., Huangfu Y., Zhang J., Dynamic Deformation Analysis of Power Transformer Windings in Short-Circuit Fault by FEM, IEEE Transactions on Applied Superconductivity, vol 24, no. 3 (2013), DOI: 10.1109/TASC.2013.2285335.
- [16] Ahmad A., Javed I., Nazar W., Asim Mukhtar M., Short Circuit Stress Analysis Using FEM in Power Transformer on H-V Winding Displaced Vertically and Horizontally, International Journal of Emerging Technology and Advanced Engineering, vol. 57, no. 1 (2018), DOI: 10.1016/j.aej.2016.10.006.
- [17] Kumbhar G. B., Kulkarni S. V., Analysis of Short-Circuit Performance of Split – Winding Transformer Using Coupled Field-Circuit Approach, IEEE Transactions on Power Delivery, vol. 22, no. 2, pp. 936–943 (2007), DOI: 10.1109/TPWRD.2007.893442.
- [18] Ahmad A., Javed I., Nazar W., Mukhtar M.A, Short Circuit Stress Analysis Using FEM in Power Transformer on H-V Winding Displaced Vertically and Horizontally, Alexandria Engineering Journal, vol. 57, iss. 1, pp. 147–157 (2018), DOI: 10.1016/j.aej.2016.10.006.
- [19] Wang Y., Zhao X., Han J., Li H., Guan Y., Bao Q., Xiao L., Lin L., Xu X., Song N., Zhang F., Development of a 630 kVA Three-Phase HTS Transformer with Amorphous Alloy Cores, IEEE Transactions on Applied Superconductivity, vol. 17, no. 2, pp. 2051–2054 (2007), DOI: 10.1109/TASC.2007.898162.
- [20] Zhong H., Niu W., Lin T., Han D., Zhang G., The Analysis of Short-Circuit Withstanding Ability for A 800KVA/10KV Shell-Form Power Transformer with Amorphous Alloy Cores, 2012 IEEE International Conference on Electricity Distribution (CICED), no. 2161–7481, pp. 1–5 (2012), DOI: 10.1109/CI-CED.2012.6508689.
- [21] Tomczuk B., Zakrzewski K., Koteras D., Magnetic Field and Short-Circuit Reactance Calculation of the 3-phase Transformer with Symmetrical Amorphous Core, Book – Computer Engineering in Applied Electromagnetism, 11th, pp. 227–230 (2005), DOI: 10.1007/1-4020-3169-6_39.
- [22] Mouhamad M., Elleau C., Mazaleyrat F., Guillaume C., Jarry B., Short-Circuit Withstand Tests of Metglas 2605SA1-Based, IEEE Transactions on Magnetics, vol. 47, no. 10, pp. 4489–4492 (2011), DOI: 10.1109/TMAG.2011.2155632.
- [23] ANSYS Inc., ANSYS Maxwell 3D V19, ansysinfo@ansys.com, vol. 19, no. REV5.0, pp. 1–1011 (2016).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-875ed485-f8a3-4924-8ed7-b7e11f229634