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Abstract. In this paper the quasilinearization method is extended to finite systems of
Riemann–Liouville fractional differential equations of order 0 < q < 1. Existence and
comparison results of the linear Riemann–Liouville fractional differential systems are recalled
and modified where necessary. Using upper and lower solutions, sequences are constructed
that are monotonic such that the weighted sequences converge uniformly and quadratically to
the unique solution of the system. A numerical example illustrating the main result is given.
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1. INTRODUCTION

Fractional differential equations have various applications in widespread fields of
science, such as in engineering [17], chemistry [19,29,30], physics [7,10,20], and others
[21, 22] (we will detail some of the motivating applications at the end of this section).
Initially in this paper we will recall existence results via the lower and upper solution
method, which will be useful to developing our main results. Despite there being
a number of existence theorems for nonlinear fractional differential equations, much as
in the integer order case, this does not necessarily imply that calculating a solution
explicitly will be routine, or even possible. Therefore, in this paper we construct
an iterative numerical method to approximate the needed solution.

Specifically, we will construct an extension of the quasilinearization method to
systems of nonlinear Riemann–Liouville (RL) fractional differential equations of order
q, where 0 < q < 1. The quasilinearization method was first developed in [4, 5, 27],
but the method we construct is more closely related to those found in [26], which is
a method via lower and upper solutions. This method is very similar to the monotone
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method in that we construct monotone sequences from linear equations based on
upper and lower solutions, which converge monotonically and uniformly. However, for
the quasilinearization method we require the nonlinear forcing function to be convex
in x, or at least can be made convex by the addition of a function. In the process, we
are guaranteed that the constructed sequences converge quadradically to the unique
solution.

There are notable complications that arise when developing the quasilineariza-
tion method for RL fractional differential equations. First of all, the iterates of the
constructed sequences are solutions to the linear fractional differential equation with
variable coefficients. The solution of this equation is quite unwieldy, therefore we will
recall existence, comparison, and inequality results for this case, including a general-
ized Gronwall type inequality, which will be paramount to our main result. Another
complication that stems from using the RL derivative is that, in general, the sequences
we construct, {αn}, {βn} do not converge uniformly to the unique solution, but the
weighted sequences {t1−qαn}, {t1−qβn} converge uniformly and quadratically to t1−qx,
where x is the unique solution of the original equation. Various quasilinearization
techniques have been established for the scalar nonlinear RL fractional differential
equation in [12,13,16].

In this paper we extend the method to finite n-systems, and as such we will
present necessary preliminary results for RL fractional systems where needed. We
will also finish with a constructed example detailing the main results of the paper.
Unfortunately we are limited in constructing such examples due to the nature of the
foundations of fractional calculus. We will detail this more explicitly in the final section.
However, we briefly describe an application that acts as motivation for considering
this method. In control theory, fractional models have found use in the design of state
estimators, specifically in nonlinear observer-based control [6, 28]. In [6] Boroujeni and
Momeni considered a nonlinear fractional order system with a nonlinear fractional
order observer leading to the following observer error dynamic equation:

Dqx̃ = (A− LC)x̃+ φ(x, u)− φ(x̂, u),

where x is the state, x̂ is the state estimation, u is the input, L is the proportional
observer gain, φ is a nonlinear Lipshitz function with φ(0, u) = 0, and x̃ = x− x̂ is the
state estimation error. We note that this system is a special case of the general system
we develop our iterative technique for, since the above system could be generalized to:

Dqx̃ = f(u, x̃).

Another possible motivating application can be found in viscoelasticity models
with the stress-strain relationship of energy passing through a medium is presented as
a linear system [11]. RL differential equations have been found to produce convenient
models for viscoelasticity [18,23], and in [31] the following fractional order model was
developed

σ(t) = E0D
qε(t), 0 < q < 1,
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where σ is the strain, ε is the stress, and E0 is a constant all depending on the nature
of the material. Then in [1–3,24] this model was extended to consider properties of
multiple viscoelastic materials with the following system

σ(t) = E0ε(t) + E1D
qε(t).

We posit that some materials may elicit a nonlinear representation:

σ(t) = F (t, ε) + E1D
qε(t),

and if so, the quasilinearization method, or other generalizations of the monotone
method, could prove helpful in approximating solutions. We hope that the method
developed herein will lead the way to approximating solutions of models such as those
discussed above, or others similar to these motivating applications.

2. PRELIMINARY RESULTS

In this section we will recall definitions and results that will be used in our main
methods. Let T > 0, we will be developing our results on the half open interval
J = (0, T ]. We will let J0 be the closure of J . We will also be focusing on the RL
derivative of order q, 0 < q < 1, further, let p = 1− q. When solving RL differential
equations of this order we will be looking in the following space of functions.

Definition 2.1. A function f ∈ C(J,R) is Cp continuous if tpf(t) ∈ C(J0,R).
We will use Cp(J,R) to denote all Cp continuous functions over J . For simplicity
we will sometimes use the notation fp to denote the weighted function tpf .

In most cases the functions that naturally occur as solutions in RL differential
equations are Cp in that there is a weak singularity at the left-most endpoint. Thus
many of our results involve using tp as a factor to use properties regarding compact
intervals. Further, if a function is Cp then the qth order RL derivative exists, see [21].
We give the definition of the RL derivative and integral below.

Definition 2.2. Let f ∈ Cp(J,R), then the RL integral of order q is given by

Iqf(t) = 1
Γ(q)

t∫

0

(t− s)q−1f(s)ds,

and the RL derivative of order q is given by

Dqf(t) = 1
Γ(p)

d

dt

t∫

0

(t− s)−qf(s)ds.

We refer the reader to [21] for more details.
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In our main results we will be constructing a method to approximate solutions of
finite n-systems of nonlinear RL initial value problems of the form,

Dqx = f(t, x), lim
t→0+

tpx(t) = z, (2.1)

where x ∈ Cp(J0,Rn), f ∈ C(J0×Rn,Rn), and z ∈ Rn. Thanks to our above simplified
notation we can write the above initial value as xp(0) = z, which we will do going
forward. In [21] and [25] it was shown that this IVP is equivalent to the Volterra
fractional integral equation, which we give specifically in the following theorem.

Theorem 2.3. Let f ∈ C(J0 × Rn,Rn), then x ∈ Cp(J0,Rn) satisfies (2.1) if and
only if it satisfies the Volterra fractional integral equation

x(t) = ztq−1 + 1
Γ(q)

t∫

0

(t− s)q−1f(s, x)ds. (2.2)

The Mittag–Leffler function is paramount in the subject of RL Calculus since
it behaves as a generalized exponential function. Here we give the definition of
the Mittag–Leffler function.

Definition 2.4. The Mittag–Leffler function with parameters a, b ∈ R is given as

Ea,b(t) =
∞∑

k=0

tk

Γ(ak + b) ,

and is entire for a, b > 0.

The next result gives us that the q-th R-L integral of a Cp continuous function
is also a Cp continuous function. This result will give us that the solutions of R-L
differential equations are also Cp continuous.

Lemma 2.5. Let f ∈ Cp(J,R), then Iqt f(t) ∈ Cp(J,R), i.e. the q-th integral of
a Cp continuous function is Cp continuous.

Note the proof of this theorem for q ∈ R+ can be found in [15]. Now we consider
results for the nonhomogeneous linear R-L differential equation. In our main results
we need a matrix formulation of the weighted Mittag–Leffler function given in the
next definition.

Definition 2.6. Let A = [aij ] be an n × n matrix where each aij ∈ R, and t > 0,
then the matrix q-weighted Mittag–Leffler function is given by

µ(At) = tq−1Eq,q(Atq) =
∞∑

k=0
Ak

tqk+q−1

Γ(qk + q) ,

and converges uniformly on compacta of J . See [21] for more discussion on this function.
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The importance of µ follows from the fact that

Dqµ(At) = Aµ(At), (2.3)

which leads us to the result of the following theorem.

Theorem 2.7. Consider the linear RL fractional system given by

Dqx(t) = Ax(t) + f(t), lim
t→0+

tpx(t) = z, (2.4)

where A is a fixed real n× n matrix, z ∈ Rn, and x, f ∈ Cp(J,Rn). Then system (2.4)
has a unique solution given as

x(t) = zµ(At) +
t∫

0

µ
(
A(t− s)

)
f(s)ds. (2.5)

The solution to system (2.4) was developed and presented in [8, 9] where x, f were
measurable functions over J0. We note that Cp functions can easily be extended to
measurable functions over J0 by setting the extensions x̃(t), f̃(t) = x(t), f(t) for t > 0,
and x̃(0) = f̃(0) = 0. Therefore Theorem 2.7 is a special case. Similarly, the case with
variable coefficients

Dqx(t) = A(t)x(t) + f(t), xp(0) = z, (2.6)

where A(t) = [aij(t)] is a continuous n × n matrix function over J0, has a unique
solution on J . See [21] for more details.

The quasilinearization method is an iterative technique that is generated from
lower and upper solutions. The remainder of this section will focus on definitions and
theorems pertinent to the utilization of lower and upper solutions of (2.1).

Definition 2.8. α, β ∈ Cp(J0,Rn) are lower and upper solutions of (2.1) respectively if

Dqα ≤ f(t, α), αp(0) = zα ≤ z,
Dqβ ≥ f(t, β), βp(0) = zβ ≥ z.

Counter intuitively, lower solutions are not guaranteed to live below upper solutions.
In fact, the following theorem gives us a condition that ensures this desired result.
While this theorem is a result for lower and upper solutions, it is essential for proving
the sequences we construct are monotonic. The first condition required for this result
is a generalization of function monotonicity that we now define.

Definition 2.9. A function f : Rn → Rn is said to be quasimonotone increasing if
for each i, y ≤ x and yi = xi implies fi(y) ≤ fi(x). Naturally, f is quasimonotone
decreasing if we reverse the inequalities.

Now if f also possesses a one-sided Lipschitz condition we can employ the following
comparsion theorem.
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Theorem 2.10 (Comparison Theorem). Let f ∈ C(J0 × Rn,Rn) and let
α, β ∈ Cp(J0,Rn) be lower and upper solutions of (2.1), then if f is quasimonotone
increasing in x and satisfies the following one-sided Lipschitz condition

fi(t, x)− fi(t, y) ≤ Li
n∑

k=1
(xk − yk),

when y ≤ x, then α ≤ β on J .

This comparison theorem is a special case of the one found in [14], and yields
a Gronwall-type inequality given in the following corollary.

Corollary 2.11. If A is a fixed real n× n matrix, α, f ∈ Cp(J0,Rn), and if

Dqα(t) ≤ Aα(t) + f(t), αp(0) ≤ z,

then

α(t) ≤ zµ(At) +
t∫

0

µ
(
A(t− s)

)
f(s)ds.

Now, we will recall a result that gives us existence of a solution to (2.1) via lower
and upper solutions.

Theorem 2.12. Let α, β ∈ Cp(J,Rn) be lower and upper solutions of (2.1) such that
α(t) ≤ β(t) on J and let f ∈ C(Ω,Rn), where Ω is defined as

Ω = {(t, y) : α(t) ≤ y ≤ β(t), t ∈ J}.

Then there exists a solution x ∈ Cp(J,Rn) of (2.1) such that α(t) ≤ x(t) ≤ β(t) on J .

The proof of this Theorem can be found in [15] with minor additions needed to
generalize it to systems. From here we have the necessary results to construct our
main result which we will do in the next section.

3. QUASILINEARIZATION METHOD

In this section we will construct the quasilinearization method for (2.1). The basis of
this method is built from the lower and upper solutions of (2.1). Here we assume f is
twice differentiable in x and that there exists a function g such that that fxx+gxx ≥ 0.
So we do not require f to be convex, but instead can be made that way by another
function. We note that such a function always exists, since we are assuming that fxx
is continuous over a compact set we can choose M such that |fxx| ≤M . Then letting
g = Mx2 will yield fxx + gxx = fxx + 2M > 0.

The proof that the constructed sequences converge quadradically will utilize a gen-
eralized Mean Value Theorem. In order to simplify this proof we present this specific
Mean Value Theorem in the following remark. Then we will give our main theorem.



Quasilinearization method for finite systems. . . 673

Remark 3.1. In our main result we will be using a generalized Mean Value Theorem.
Specifically, if f ∈ C0,2(J × Rn,Rn), fxx ≥ 0, and u ≥ v, then

f(t, u)− f(t, v) =
[ 1∫

0

fx(t, su+ (1− s)v)ds
]
·(u− v) ≤ [fx(t, u)](u− v).

Here, and going forward, [fx] is the Jacobian matrix of f . Further, we will need another
application of this Mean Value Theorem involving [fx(u)− fx(v)], specifically,

[fx(u)− fx(v)](u− v) = (u− v)T
[ 1∫

0

fxx(t, su+ (1− s)v)ds
]

(u− v),

where T represents the transpose of a matrix and [fxx] is the Hessian of f , which in
this case is an n-array of Hessian matrices (Hf1, Hf2, Hf3, . . . ,Hfn). Further, given
f and a vector c, the Hessian expression above can be expressed in terms of a sum of
Hessian matrices:

cT [fxx]c =
n∑

i=1
cT [Hfi]c,

which is a formulation we will utilize in our main result which is given below.

Theorem 3.2. Suppose the following hypotheses hold.

(H1) α0, β0 ∈ Cp(J,R) are lower and upper solutions of (2.1) such that α0 ≤ β0 on J .
(H2) f, g ∈ C0,2(Ω,Rn), f, g are quasimonotone increasing in x for t ∈ J , and

fxx + gxx ≥ 0 and gxx ≥ 0 on Ω, where

Ω = {(t, u) : α0 ≤ u ≤ β0, t ∈ J}.

(H3) aij(t, α0, β0) ≥ 0 for i 6= j where A(t, α0, β0) = [aij(t, α0, β0)] is an n×n matrix
given by

A(t, α0, β0) = fx(t, α0) + gx(t, α0)− gx(t, β0).

Then there exist monotone sequences {αk}, {βk} where the p-weighted sequences {tpαk},
{tpβk} converge uniformly to tpx, where x is the unique solution of (2.1).

Proof. To begin, note that by (H2) we have that x exists and is unique, further
(H2) also implies that f has the one-sided Lipschitz condition from the Comparison
Theorem. Applying (H2) and the Mean Value Theorem for any u, v ∈ Ω, u ≥ v
we have

f(t, u) ≥ f(t, v) +
[
fx(t, v) + gx(t, v)

]
(u− v)−

[
g(t, u)− g(t, v)

]

≥ f(t, v) +
[
fx(t, v) + gx(t, v)− gx(t, u)

]
(u− v) (3.1)

= f(t, v) + [A(t, u, v)](u− v).
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Further A(t, ξ, η) has a mixed monotone property, in that A is increasing in ξ and
decreasing in η. This is proven directly from the fact that (H2) implies fx + gx is
increasing and −gx is decreasing. This implies that for u, v defined above that

aij(t, u, v) ≥ aij(t, α0, β0) ≥ 0

for i 6= j. Further, we can finally refine (3.1) to yield

f(t, u) ≥ f(t, v) + [A(t, v, u)](u− v), (3.2)

for α0 ≤ v ≤ u ≤ β0.
From here the sequences {αk}, {βk} will be defined as the solutions to the linear

RL fractional systems of the form

Dqαk+1 = f(t, αk) + [A(t, αk, βk)](αk+1 − αk), αpk+1(0) = z, (3.3)
Dqβk+1 = f(t, βk) + [A(t, αk, βk)](βk+1 − βk), βpk+1(0) = z, (3.4)

for k ≥ 0, where α0, β0 are the lower and upper solutions defined in the hypotheses.
We note that the solutions of these systems exist and are unique since they are the
form of (2.6).

First we will consider α1, defined as the solution to the system

Dqα1 = f(t, α0) + [A(t, α0, β0)](α1 − α0). (3.5)

Now note that by definition

Dqα0 ≤ f(t, α0) + [A(t, α0, β0](α0 − α0),

and by applying (3.2) we obtain

Dqβ0 ≥ f(t, α0) + [A(t, α0, β0)](β0 − α0).

Thus, by the Comparison Theorem, α0 ≤ α1 ≤ β0 on J . Similarly we can prove that
α0 ≤ β1 ≤ β0 on J .

Now, using (3.1) and the monotone property of A we have

Dqx ≥ f(t, α0) + [A(t, α0, x)](x− α0) ≥ f(t, α0) + [A(t, α0, β0)](x− α0).

By the Comparison Theorem we have α1 ≤ x on J . Similarly we can prove that x ≤ β1
on J . So we have that

α0 ≤ α1 ≤ x ≤ β1 ≤ β0

on J . Using this as our basis step we can inductively prove that

αk−1 ≤ αk ≤ x ≤ βk ≤ βk−1

on J for all k ≥ 1. Each step of this induction follows in an analogous manner to what
was done previously. Specifically, using the mixed monotone property of A along with
the Comparison Theorem. This gives us that the sequences {αk}, {βk} are monotone.
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Now we will use the Arzelá–Ascoli Theorem to prove that the weighted sequences
{tpαk}, {tpβk} converge uniformly. To do so we note that both weighted sequences
are uniformly bounded since

|tpαki| ≤ |tp(αki − α0i)|+ |tpα0i| ≤ |tp(β0i − α0i)|+ |tpα0i|,
|tpβki| ≤ |tp(βki − α0i)|+ |tpα0i| ≤ |tp(β0i − α0i)|+ |tpα0i|,

for each k ∈ N and for each i ∈ {1, 2, 3, . . . , n}. From here we need to show that the
weighted sequences are equicontinuous. We will do so with a technique similar to [14].
For simplicity we introduce the notation

F (t, αk+1) = f(t, αk) + [A(t, αk, βk)](αk+1 − αk)

for each k ≥ 0. Note that since f and A are continuous over J0 and each αk is Cp, and
since the weighted sequences are uniformly bounded, there exists a bound M ∈ Rn
such that ∣∣tpF (t, αk+1)

∣∣ ≤M

for t ∈ J0 and for each k ≥ 0. For simplicity we are using the absolute value bars to
mean

|x| = (|x1|, |x2|, |x3|, . . . , |xn|).

Further in our result we will need a property regarding the function φ defined as

φ(t) = 1
Γ(q) t

p(t− s)q−1.

We note that φ is decreasing in t, provided t > s ≥ 0. To show this note that the
derivative

d
dtφ(t) = − s

Γ(q) (1− q)t−q(t− s)q−2 ≤ 0.

For our first case consider, without loss of generality, that t ≥ τ > 0. Then applying
Theorem 2.3 we obtain

|tpαk+1(t)− τpαk+1(τ)| =
∣∣∣∣∣

t∫

0

φ(t)F (s, αk+1)ds−
τ∫

0

φ(τ)F (s, αk+1)ds
∣∣∣∣∣

≤
t∫

τ

φ(t)
∣∣F (s, αk+1)

∣∣ds+
τ∫

0

|φ(t)− φ(τ)|
∣∣F (s, αk+1)

∣∣ds

≤M
t∫

τ

φ(t)sq−1ds+M

τ∫

0

[φ(τ)− φ(t)]sq−1ds.

(3.6)
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We will consider the integrals in the final step above separately. For the first integral
we note that s ≥ τ implies that

M

t∫

τ

φ(t)sq−1ds = M
tp

Γ(q)

t∫

τ

(t− s)q−1sq−1ds ≤M tpτ q−1

Γ(q)

t∫

τ

(t− s)q−1ds

= M

Γ(q + 1)

[ t
τ

]p
(t− τ)q

(3.7)

Now, for simplicity name the second integral from (3.6) I, we will employ the
RL-integral power rule along with the Beta Function

B(q, q) =
1∫

0

(1− u)q−1uq−1du = Γ(q)Γ(q)
Γ(2q) .

From this and using the transformation tu = s, I becomes

I = M

Γ(q)

[
τp

τ∫

0

(τ − s)q−1sq−1ds− tp
τ∫

0

(t− s)q−1sq−1ds

]

= M

Γ(q)

[
B(q, q)τ q − tq

τ/t∫

0

(1− u)q−1uq−1du

]
.

From here we will add and subtract tpB(q, q), and use the fact that u ≥ τ/t to obtain

I = M

Γ(q)

[
B(q, q)τ q − tpB(q, q) + tq

1∫

τ/t

(1− u)q−1uq−1du

]

≤ M

Γ(q) t
p(τ/t)q−1

1∫

τ/t

(1− u)q−1du = M

Γ(q + 1)

[ t
τ

]p
(t− τ)q.

Now, in the proof of equicontinuity, we can freely choose a δ small enough where
0 < t− τ < δ and 1 ≤ (t/τ)p ≤ 2p. Giving us finally that

|tpαk+1(t)− τpαk+1(τ)| ≤ 2p+1M

Γ(q + 1)(t− τ)q.

For our second case consider when τ = 0. Here we get

|tpαk+1(t)− z| ≤M tp

Γ(q)

t∫

0

(t− s)q−1sq−1ds = M
Γ(q)
Γ(2q) t

q.
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So finally, lettingM = max
{ 2p+1M

Γ(q+1) ,
MΓ(q)
Γ(2q)

}
we get

|tpαk+1(t)− τpαk+1(τ)| ≤ M|t− τ |q

for all t ≥ τ ≥ 0. Since this expression does not depend on k, the remainder of proof of
equicontinuity for {tpαk} is routine. Equicontinuity for {tpβk} follows in an analogous
manner. So by the Arzelá–Ascoli Theorem we have that both weighted sequences
converge uniformly on J0. Suppose that tpα, tpβ are the limits of the weighted
sequences respectively. This also gives us that αk → α, βk → β pointwise on J .
Then due to these convergence properties, the continuity properties of f and A, and
Theorem 2.2 we have that

tpα = lim
(
z + tp

Γ(q)

t∫

0

(t− s)q−1[f(s, αk) + [A(s, αk, βk)](αk+1 − αk)
]
ds

)

= z + tp

Γ(q)

t∫

0

(t− s)q−1[f(s, α)
]
ds.

Implying that α satisfies (2.1) and therefore α = x, and similarly β = x, since x is
the unique solution of (2.1).

Now we will prove that the weighted sequences converge quadradically. To do so,
consider the sequence γk = βk − αk. Further note, since f and g are continuous over
J0 and x is Cp there exists a function F such that

F(t, tpx) = f(t, x) + g(t, x),
implying that

fxx(t, x) + gxx(t, x) = t2pFxx(t, tpx).
Using the Mean Value Theorem, i.e. Remark 3.1, and the monotone properties of fx,
we get

Dqγk+1 ≤ fx(t, βk)γk + [A(t, αk, βk)](γk+1 − γk)
≤ [fx(t, βk)− fx(t, α) + gx(t, βk)− gx(t, αk)]γk + [A(t, αk, βk)]γk+1

≤ γTk

[ 1∫

0

(f + g)xx
(
t, cβk + (1− c)αk

)
dc

]
γk +Nγk+1

= γTk

[ 1∫

0

t2pFxx
(
t, ctpβk + (1− c)tpαk

)
dc

]
γk +Nγk+1

≤ Qt2p(γk · γk) +Nγk+1.

In the above steps N and Q are n×n matrices such that N is invertible, and an upper
bound of [A(t, αk, βk)], and

∑n
i=1(HFi) ≤ Q. Then by Corollary 2.11 we have that

tpγk+1 ≤ tp
t∫

0

µ
(
N(t− s)

)
Qs2p(γk · γk)ds,
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which implies that

||tpγk+1|| ≤ Q||tpγk||2tp
t∫

0

µ
(
N(t− s)

)
ds = Q||tpγk||2tp

t∫

0

∞∑

k=0

Nk(t− s)kq+q−1

Γ(qk + q)

= Q||tpγk||2tp
∞∑

k=0

Nktq(k+1)

Γ(q(k + 1) + 1) ≤ N
−1T pEq,1(NT q)Q||tpγk||2.

The above norm is ||tpγ|| = maxJ0 |tpγ|, where | · | is as used previously. Further,
‖tpγ‖2 = (maxJ0 |tpγi|2)ni=1. Finally this gives that {tpγn} converges quadratically to
zero and thus completes the proof.

We note that this acts as a generalization to the standard quasilinearization
method, since if f is convex then we can simply choose g = 0. Further, even though
convergence is quadratic, which is stronger than convergence in the monotone method,
the computation of each iterate is far more computer intensive than iterates from the
monotone method. We will exemplify this conundrum with the following illustrative
example.
Example 3.3. Let J = (0, 1] and consider the system

D1/2x1 = 1
2 + 5

8 t+ 1
16x

2
2, lim

t→0+
t1/2x1(t) = 0,

D1/2x2 = 1
10 + 1

6 t+ 1
20x

3
1, lim

t→0+
t1/2x2(t) = 0.

Then

f(t, x1, x2) =




1
2 + 5

8 t+ 1
16x

2
2

1
10 + 1

6 t+ 1
20x

3
1


 ,

where f is quasimonotone increasing in x = (x1, x2) for t ∈ J , and g ≡ 0. Also,
fxx + gxx ≥ 0 and (H2) is satsified.

Now we will denote
f1(t, x1, x2) = 1

2 + 5
8 t+ 1

16x
2
2

and
f2(t, x1, x2) = 1

10 + 1
6 t+ 1

20x
3
1,

so (f1)x1 = 0, (f1)x2 = 1
8x2, (f2)x1 = 3

20x
2
1, and (f2)x2 = 0.

Consider the functions α0 = (α0,1, α0,2) and β0 = (β0,1, β0,2), where α0,1 =
√
t

2 ,
α0,2 = 0, β0,1 = 3, and β0,2 = 3− t

16 . Then

lim
t→0+

t1/2α0(t) ≤ 0, lim
t→0+

t1/2β0(t) ≥ 0,

and for t ∈ J ,
√
π

4 = D1/2α0,1 ≤ f1(t, α0,1, α0,2) = 1
2 + 5

8 t,

0 = D1/2α0,2 ≤ f2(t, α0,1, α0,2) = 1
10 + 1

6 t+ t3/2

160 ,
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and
3√
πt

= D1/2β0,1 ≥ f1(t, β1, β2) = 1
2 + 5

8 t+ 1
16

(
3− 1

16 t
)2
,

24− t
8
√
πt

= D1/2β0,2 ≥ f2(t, β1, β2) = 1
10 + 1

6 t+ 27
20 ,

that is, α0, β0 are lower and upper solutions for the system with α0 ≤ β0 which
satisfies (H1).

We can now compute A and µ(A(t)). In fact

A(t) =
[
(f1)x1(t, α0,1, α0,2) (f1)x2(t, α0,1, α0,2)
(f2)x1(t, α0,1, α0,2) (f2)x2(t, α0,1, α0,2)

]
=
[

0 1
8α0,2

3
20α

2
0,1 0

]
=
[

0 0
3
80 t 0

]
.

Also,

µ (A(t)) = tq−1Eq,q (A(tq)) =
∞∑

k=0
A(t)k tqk+q−1

Γ(qk + q) .

Observe that A(t)k = 0 for k ≥ 2, since q = 1
2 , then

µ (A(t)) = t−1/2

Γ( 1
2 )

+A(t1/2) 1
Γ(1) =

[
t−1/2
√
π

0
3
80 t

1/2 t−1/2
√
π

]
.

Finally, the solution of

D1/2x(t) = A(t)x(t) + f(t), lim
t→0+

t1/2x(t) = 0,

is given by

x(t) =
t∫

0




(t−s)−1/2
√
π

0
3
80 (t− s)1/2 (t−s)−1/2

√
π


 f(s)ds.

We now use this formula to compute the first iterates α1 and β1.
Let us compute α1 first,

D1/2α1 =
[ 1

2 + 5
8 t

1
10 + 1

6 t− t3/2

80

]
+
[

0 0
3
80 t 0

] [
α1,1
α1,2

]
.

Then, from (2.5),

α1 =
t∫

0




(t−s)−1/2
√
π

0

3
80 (t− s)1/2 (t−s)−1/2

√
π







1
2 + 5

8s

1
10 + 1

6s− 1
80s

3/2


 ds

=




√
t(6+5t)
6
√
π

√
t(t(36

√
π(t+2)−27π

√
t+1280)+1152)

5760
√
π


 .
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Similarly, we get from (2.5) that

β1 =
t∫

0




(t−s)−1/2
√
π

0

3
80 (t− s)1/2 (t−s)−1/2

√
π







17
16 + 77

128s+ s2

4096

29
20 + 1

6s


 ds

=




√
t(t(t+3080)+8160)

3840
√
π

(t2+4928t+26112)t2
1310720 + (13t+348)

√
t

120
√
π


 .

In Figures 1 and 2 we have shown two sets of the four iterates graphically.

Fig. 1.
√
tα0,1(t) ≤

√
tα1,1(t) ≤

√
tβ1,1(t) ≤

√
tβ0,1(t)

Fig. 2.
√
tα0,2(t) ≤

√
tα1,2(t) ≤

√
tβ1,2(t) ≤

√
tβ0,2(t)
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In order to find α2, β2 we would need to take the derivative of α1 and then compute
A(t) which will involve the weighted Mittag–Leffler function. Integrating this expression
is significantly more challenging. One of the future plans is to find an approximation
for the matrix q-weighted Mittag–Leffler function so we can to obtain higher order
iterates. However, even with this limitation we can see the convergence developing
graphically.
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