PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Circulation types and their relationships with extreme wind energy generation events in Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates the influence of different atmospheric circulation types on wind energy production in Poland from 1948 to 2019. By utilizing the ERA5 reanalysis dataset, which provides detailed atmospheric and surface parameters, and the Litynski calendar of circulation types, this research is directed toward understanding how various circulation patterns affect wind energy generation. The study specifically focuses on periods of energy droughts (days with very low wind energy production) and energy floods (days with very high wind energy production). The analysis reveals trends, along with annual and seasonal variations in the frequency of energy droughts and floods. Over the period of study, the number of drought days varied from 51 to 108 per year, while the number of flood days varied from 44 to 97 per year. Cyclonic circulation types with NW winds are found to be the most favorable for wind energy production, leading to higher daily energy generation. Conversely, anticyclonic circulation types with winds from the north, northeast, and east are more likely to result in energy droughts. Certain seasons exhibit higher variability in the number of drought and flood days, influenced by the prevailing circulation types. The standard deviation of the number of drought days in summer is 7.3 compared to 4.8 in spring; for flood days the standard deviation for winter is 8.4 and for summer only 3.4.
Słowa kluczowe
Twórcy
  • Wrocław University of Science and Technology, Poland
  • Wrocław University of Science and Technology, Poland
  • Wrocław University of Science and Technology, Poland
  • Jagiellonian University Department of Climatology, Poland
  • Institute of Meteorology and Water Management - National Research Institute, Poland
autor
  • Wrocław University of Science and Technology, Poland
Bibliografia
  • Brown T., Reichenberg L., 2021, Decreasing market value of variable renewables can be avoided by policy action, Energy Economics, 100, DOI: 10.1016/j.eneco.2021.105354.
  • Correia J.M., Bastos A., Brito M.C., Trigo R.M., 2017, The influence of the main large-scale circulation patterns on wind power production in Portugal, Renewable Energy, 102, 214-223, DOI: 10.1016/j.renene.2016.10.002.
  • Dumas M., Kc B., Cunliff C.I., 2019, Extreme weather and climate vulnerabilities of the electric grid: a summary of environmental sensitivity quantification methods, Technical Report No. ORNL/TM-2019/1252, Oak Ridge National Lab., Oak Ridge, TN (United States), DOI: 10.2172/1558514.
  • Gonçalves A.C.R., Costoya X., Nieto R., Liberato M.L.R., 2024, Extreme weather events on energy systems: a comprehensive revi ew on impacts, mitigation, and adaptation measures, Sustainable Energy Research, 11, DOI: 10.1186/s40807 -023-00097-6.
  • Grams C., Beerli R., Pfenninger S., Staffell I., Wernli H., 2017, Balancing Europe’s wind-power output through spatial deployment informed by weather regimes, Nature Climate Change, 7, 557-562, DOI: 10.1038/nclimate3338.
  • Harrison G., Wallace A.R., 2006, Sensitivity of wave energy to climate change, IEEE Transactions on Energy Conversion, 20 (4), 870-877, DOI: 10.1109/TEC.2005.853753.
  • Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., Thépaut J.-N., 2020, The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146 (730), 1999-20249, DOI: 10.1002/qj.3803.
  • Hess P., Brezowsky H., 1952, Berichte des Deutschen Wetterdienstes in der US-Zone, No. 33: Katalog der Grosswetterlagen Europas, Deutscher Wetterdienst Zentralamt Bad Kissingen, 39 pp.
  • Hoxha B., Kuriqi A., Filkoski R.V., 2023, Influence of seasonal air density fluctuations on wind speed distribution in complex terrains in the context of energy yield, Energy, Ecology and Environment, 8, 175-187, DOI: 10.1007/s40974-023-00301-9.
  • Huth R., Beck C., Philipp A., Demuzere M., Ustrnul Z., Cahynová M., Kyselý J., Tveito O.E., 2008 , Classifications of Atmospheric Circulation Patterns, Annals of the New York Academy of Sciences, 1146 (1), 105-152, DOI: 10.1196/annals.1446.019.
  • Igliński B., Piechota G., Kiełkowska U., Kujawski W., Pietrzak M.B., Skrzatek M., 2023, The assessment of solar photovoltaic in Poland: the photovoltaics potential, perspectives and development, Clean Technologies and Environmental Policy, 25, 281- 298, DOI: 10.1007/s10098-022-02403-0.
  • Jerez S., Tobin I., Vautard R., Montávez J.P., López-Romero J.M., Thais F., Bartok B., Christensen O.B., Colette A., Déqué M., Nikulin G., Kotlarski S., van Meijgaard E., Teichmann C., Wild M., 2015, The impact of climate change on photovoltaic power generation in Europe, Nat Communications, 6, DOI: 10.1038/ncomms10014.
  • Jurasz J., Guezgouz M., Campana P.E., Kaźmierczak B., Kuriqi A., Bloomfield H., Hingray B., Canales F.A., Hunt J.D., Sterl S. , Elkadeem M.R., 2024, Complementarity of wind and solar power in North Africa: potential for alleviating energy droughts and impacts of the North Atlantic Oscillation, Renewable and Sustainable Energy Reviews, 191, DOI: 10.1016/j.rser.2023.114181.
  • Kulesza K., 2017, Nowe spojrzenie na klasyfikację typów cyrkulacji atmosfery J. Lityńskiego, Prace Geograficzne, 150, 79-94, DOI: 10.4467/20833113PG.17.018.7322.
  • Lityński J., 1969, Liczbowa klasyfikacja typów cyrkulacji i typów pogody dla Polski, Prace PIHM, 97, 3-14.
  • Moomaw W., Yamba F., Kamimoto M., Maurice L., Nyboer J., Urama K., Weir T., Jäger-Waldau A., Krey V., Sims R., Steckel J., Sterner M., Stratton R., Verbruggen A., Wiser R., 2012, Renewable energy and climate change, [in:] Renewable Energy Sources and Climate Change Mitigation, Special Report of the IPCC, 161-207, DOI: 10.1017/CBO9781139151153.005.
  • Muyuan L., Yao J., Shen Y., Yuan B., Simmonds I., Liu Y., 2023, Impact of synoptic circulation patterns on renewable energyrelated variables over China, Renewable Energy, 215, DOI: 10.1016/j.renene.2023.05.133.
  • Niedźwiedź T., Łupikasza E., 2019, Atmospheric circulation in the investigation of Polish climatologists, Przegląd Geofizyczny, 64 (1-2), DOI: 10.32045/PG-2019-004.
  • Niedźwiedź T., Ustrnul Z., 2021, Change of Atmospheric Circulation, [in:] Climate Change in Poland: Past, Present, Future, M. Falarz (ed.), Springer, 123-150.
  • Nowosad M., 2008, Remarks about the Lityński classification calendar of the types of the atmospheric circulation, [in:] Advaces in Weather and Circulation Type Classification & Applications, COST 733 Mid-term Conference, Book of abstracts, Jagiellonian University Kraków, Institute of Meteorology and Water Management, Branch in Krakow, p. 66.
  • Pianko-Kluczyńska K., 2007, Nowy kalendarz typów cyrkulacji atmosfery według J. Lityńskiego, Wiadomości Meteorologii, Hydrologii, Gospodarki Wodnej, 51 (4), 65-85.
  • Pryor S., Barthelmie R., Kjellström E., 2005, Analyses of the potential climate change impact on wind energy resources in northern Europe using output from a Regional Climate Model, Climate Dynamics, 25, 815-835, DOI: 10.1007/s00382-005- 0072-x.
  • del Río P., Peñasco C., Mir-Artigues P., 2018, An overview of drivers and barriers to concentrated solar power in the European Union, Renewable and Sustainable Energy Reviews, 81, 1019-1029, DOI: 10.1016/j.rser.2017.06.038.
  • Ustrnul Z., Czekierda D., Wypych A., 2010, Extreme values of air temperature in Poland according to different atmospheric circulation classifications, Physics and Chemistry of the Earth, 35 (9-12), 429-436, DOI: 10.1016/j.pce.2009.12.012.
  • Ustrnul Z., Wypych A., Czekierda D., 2013, Composite circulation index of weather extremes (the example for Poland), Meteorologische Zeitschrift, 22 (5), 551-559, DOI: 10.1127/0941-2948/2013/0464.
  • Ustrnul Z., Wypych A., Henek E., Maciejewski M., Bochenek B., 2015, Climatologically based warning system against meteorological hazards and weather extremes: the example for Poland, Natural Hazards, 77 (3), 1711-1729, DOI: 10.1007/s11069-015-1673-2.
  • Wypych A., Ustrnul Z., Henek E., 2014, Meteorological hazards - visualization system for National Protection Against Extreme Hazards for Poland, Meteorology Hydrology and Water Management, 2 (1), 37-42, DOI: 10.26491/mhwm/28306.
  • Wypych A., Ustrnul Z., Sulikowska A., Chmielewski F.-M., Bochenek B., 2017, Spatial and temporal variability of the frost-free season in Central Europe and its circulation background, International Journal of Climatology, 37 (8), 3340-3352, DOI: 10.1002/joc.4920.
  • Wickham H., 2016, ggplot2: Elegant Graphics for Data Analysis, Springer International Publishing, 213 pp., DOI: 10.1007/978-0-387-98141-3.
  • Wickham H., François R., 2014, dplyr: A Grammar of Data Manipulation, https://dplyr.tidyverse.org/.
  • van der Wiel K., Bloomfield H.C., Lee R.W., Stoop L.P., Blackport R., Screen J.A., Selten F.M., 2019 , The influence of weather regimes on European renewable energy production and demand, Environmental Research. Letters, 14, DOI: 10.1088/1748- 9326/ab38d3.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87578ac3-1836-42e5-9553-5cb783633780
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.