PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Temperature and pressure dependent creep stress analysis of spherical shell

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present paper, we have studied the temperature and pressure dependent creep stress analysis of spherical shell. The review is critical to enhance the warm resistance of spherical shells in high-temperature conditions. The effect of different parameters was studied and it was noticed that the parameter n has a significant influence on the creep stresses and strain rates. Creep stresses and strain rates are ascertained on the premise of summed up strain measures and Seth’s transition hypothesis. This investigation is completed to demonstrate the impacts of temperature on the creep stresses and strain rates in the spherical shell. The resulting quantities are computed numerically and depicted graphically. It has been watched that the spherical shell made of an incompressible material is on more secure side of configuration when contrasted with the shell made of a compressible material.
Słowa kluczowe
Rocznik
Strony
105--115
Opis fizyczny
Bibliogr. 20 poz., wykr.
Twórcy
  • Department of Mathematics, Guru Nanak Dev Engineering College Ludhiana, Punjab, INDIA
autor
  • Research Scholar, I.K.G. Punjab Technical University Kapurthala, Punjab, INDIA
Bibliografia
  • [1] Jayaraman J. and Rao K.P. (1978): Thermal stresses in a spherical shell with a conical nozzle. Nuclear Engineering and Design, vol.48, No.2, pp.367-375.
  • [2] Miller G.K. (1995): Stresses in a spherical pressure vessel undergoing creep and dimensional changes. International Journal of Solids and Structures, vol.32, No.14, pp.2077-2093.
  • [3] Rogério Martins Saldanha da Gama (1997): Mathematical modeling of the non-linear heat transfer process in a gray shell surrounded by a non-participating medium. International Journal of Non-Linear Mechanics, vol.32, No.5, pp.885-904.
  • [4] Stemmer K., Harder H. and Hansen U. (2006): A new method to simulate convection with strongly temperatureand pressure-dependent viscosity in a spherical shell: Applications to the Earth's mantle. Physics of the Earth and Planetary Interiors, vol.157, No.3, pp.223-249.
  • [5] Wang Y. and Song H. (2010): On the nonlinear vibration of heated bimetallic shallow shells of revolution. International Journal of Mechanical Sciences, vol.52, No.3, pp.464-470.
  • [6] Kashkoli M.D. and Nejad M.Z. (2014): effect of heat flux on creep stresses of thick-walled cylindrical pressure vessels. Journal of Applied Research and Technology, vol.12, No.3, pp.585-597.
  • [7] Khazaeinejad P. and Usmani A.S. (2016): Temperature-dependent nonlinear analysis of shallow shells: A theoretical approach. Composite Structures, vol.141, pp.1-13.
  • [8] Garg M., Salaria B.S. and Gupta V.K. (2015): Modeling creep in a variable thickness rotating FGM disc under varying thermal gradient. Engineering Computations, vol.32, No.5.
  • [9] Thakur P., Kaur J. and Singh S.B. (2016): Thermal creep transition stresses and strain rates in a circular disc with shaft having variable density. Engineering Computations, vol.33, No.3.
  • [10] Seth B.R. (1962): Transition theory of elastic-plastic deformation, creep and relaxation. Nature, vol.195, pp.896-897.
  • [11] Seth B.R. (1966): Measure concept in Mechanics.  International Journal of Non-Linear Mechanics, vol.1, No.1, pp.35-40.
  • [12] Parkus H. (1976): Thermo-Elasticity. New York: Springer-Verlag Wien, USA.
  • [13] Deepak D., Gupta V.K. and Dham A.K. (2010): Creep modeling in functionally graded rotating disc of variable thickness. Journal of Mechanical Science and Technology, vol.24, No.1, pp.2221-2232.
  • [14] Deepak D., Gupta V.K. and Garg M. (2015): Creep behavior of rotating FGM disc with linear and hyperbolic thickness profiles. Kragujevac J. Sci., vol.37, pp.35-48.
  • [15] Thakur P. (2010): Creep transition stresses in a thin rotating disc with shaft by finite deformation under steady state temperature. Thermal Science, vol.14, No.2, pp.425-436.
  • [16] Thakur P. (2011): Creep transition stresses of a thick isotropic spherical shell by finitesimal deformation under steady-state of temperature and internal pressure of a thick isotropic spherical shell. Thermal Science, vol.15, No.2, pp.157-165.
  • [17] Sharma S., Sahai I. and Kumar R. (2013): Creep transition of a thin rotating annular disk of exponentially variable thickness with inclusion and edge load. Procedia Engineering, pp.348–354.
  • [18] Gupta S. and Verma G. (2015): Creep transition of spherical shell under internal pressure. International Scientific Journal Theoretical and Applied Science, vol.24, No.4, pp.201-207.
  • [19] Verma G., Rana P., Pathania D.S. and Thakur P. (2017): Creep transition in the rotating spherical shell under the effect of density variable by Seth’s transition theory. AIP Conference Proceeding 1802, 020020; doi:10.1063/1.4973270.
  • [20] Odquist F.K.G. (1974): Mathematical theory of creep and creep rupture. USA: Clarendo Press, Oxford.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87567054-7f38-4f52-9775-d46d5180ad49
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.