PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A bonded particle model for analysis of the flaw orientation effect on crack propagation mechanism in brittle materials under compression

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, implementation of a bonded particle model (BPM) using PFC2D was proposed to study the effect of the flaw orientation on the crack propagation mechanism in brittle materials such as rocks under various compressive loads. For this purpose, several pre-cracked rock specimens with different orientation of flaw under uniaxial and biaxial loads were modeled in PFC2D (bonded particle model) and crack propagation processes were monitored. According to the results, by varying the flaw inclination angle (β), two types of the secondary crack propagation mechanism were detected. Also, it was concluded that the confinement stress affected the crack initiation and propagation mechanism and the increase of it made the crack initiation angle steeper.
Rocznik
Strony
40--52
Opis fizyczny
Bibliogr. 44 poz., rys., wykr.
Twórcy
  • Mining and Metallurgical Engineering Department, Yazd University, Yazd, Iran
  • Mining and Metallurgical Engineering Department, Amirkabir University of Technology, Tehran, Iran
autor
  • Mining and Metallurgical Engineering Department, Yazd University, Yazd, Iran
  • Mining and Metallurgical Engineering Department, Yazd University, Yazd, Iran
Bibliografia
  • [1] N.R. Barton, Review of anew shear strength criterion for rock joints, Engineering Geology 7 (1973) 287–332.
  • [2] B. Ladany, G. Archambault, Simulation of shear behavior of a jointed rock mass, in: Proceeding of the 11th Symposiumon Rock Mechanics (ATME), 105, 1970.
  • [3] W.F. Brace, Brittle fracture of rocks, in: Judd (Ed.), State of Stress in the Earth's Crust, American Elsevier Publishing Co., New York, 1964, pp. 111–180.
  • [4] E. Hoek, Rock fracture around mining excavations, Proceedings of the Fourth International Conference on Strata Control and Rock Mechanics, Columbia University Press, New York 335–348.
  • [5] F.A. McClintock, J.B. Walsh, Frictionon Griffith crack under pressure, Proceedings of the Fourth US National Congress on Applied Mechanics, vol.2, ASME Press, NewYork: 1015–1021.
  • [6] F. Erdogan, G.C. Sih, On the crack extension in plates under plane loading and transverse shear, ASME Journal of Basic Engineering 85 D (1963) 519–527.
  • [7] T. Backers, G. Dresen, E. Rybacki, O. Stephansson, New data on Mode II fracture toughness of rock from the punch- through shear test. In: SINOROCK 2004 Symposium, Paper 1A 01, International Journal of Rock Mechanics and Mining Sciences, 41, 2004, pp. 351–352.
  • [8] B. Shen, O. Stephansson, M. Rinne, H.S. Lee, L. Jing, K. Roshoff, A fracture propagation code and its application to nuclear waste disposal, International Journal of Rock Mechanics and Mining Sciences 41 (2004) 448–453.
  • [9] C.H. Park, A. Bobet, Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression, Engineering Fracture Mechanics 77 (2010) 2727–2748.
  • [10] A. Bobet, H.H. Einstein, Fracture coalescence In rock-type materials dunder uniaxial and biaxial compression, International Journal of Rock Mechanics and Mining Sciences 35 (1998) 863–888.
  • [11] A. Bobet, H.H. Einstein, Numerical modeling of fracture coalescence in a model rock material, International Journal of Fracture 92 (1998) 221–252.
  • [12] L.N.Y. Wong, H.H. Einstein, Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression, International Journal of Rock Mechanics and Mining Sciences 46 (2009) 239–249.
  • [13] R.H.C. Wong, K.T. Chau, Crack coalescence in a rock-like material containing two cracks, International Journal of Rock Mechanics and Mining Sciences 35 (1998) 147–164.
  • [14] O. Mughieda, A.K. Alzoubi, Fracture mechanisms of offset rock joints – a laboratory in vestigation, Geotechnical and Geological Engineering 22 (2004) 545–562.
  • [15] M. Fatehi Marji, J. Gholamnejad, M. Eghbal, On the crack propagation mechanism of brittle rocks under various loading conditions, in: Proceedings of International Multidisciplinary Scientific Geo Conference, Bulgaria, 2011, pp. 561–568.
  • [16] M. Fatehi Marji, A. Manouchehrian, M. Mohebbi, Numerical prediction of crack path in precracked rocks under uniaxial compression using bonded particle model, in: Proceedings of the 19th European Conference on Fracture, Russia, 2012.
  • [17] D. Healy, R.R. Jones, R.E. Holdsworth, Three-dimensional brittle shear fracturing by tensile crack in teraction, Nature 439 (2006) 64–67.
  • [18] S. Peng, A. M. Johnson, Crack growth and fault in gin cylindrical specimens of Chelmsford granite, Inter national Journal of Rock Mechanics and Mining Sciences 9 (1972) 37–86.
  • [19] Z. Reches, D.A. Lockner, Nucleation and growth of faults in brittle rocks, Journal of Geophysical Research-Solid Earth 99 (B9) (1994) 18159–18173.
  • [20] H. Horii, S. Nemat-Nasser, Brittle failure in compression: splitting, faulting and ductile–brittle transition, Philosophical Transactions of the Royal Society of London A319 (1986) 337–374.
  • [21] A. Manouchehrian, M. Fatehi Marji, Numerical analysis of confinement effect on crack propagation mechanism from a flaw in a pre-cracked rock under compression, Acta Mechanica Sinica 28 (2012) 1387–1389.
  • [22] X.P. Zhang, L.N.Y. Wong, Cracking processes in rock-like material containing a single flaw under uniaxial compression: a numerical study based on parallel bonded-particle model approach, Rock Mechanics and Rock Engineering (2011) http://dx.doi.org/10.1007/s00603-011-0176-z.
  • [23] Y.P. Li, L.Z. Chen, Y.H. Wang, Experimental research on pre-cracked marble under compression, International Journal of Solids and Structures 42 (2005) 2505–2516.
  • [24] S. Lee, G. Ravichandran, Crack initiation in brittle solids under multi axial compression, Engineering Fracture Mechanics 70 (2003) 1645–1658.
  • [25] A.R. Ingraffea, F.E. Heuze, Finite element models for rock fracture mechanics, International Journal for Numerical and Analytical Method sin Geomechanics 4 (1980) 25–43.
  • [26] M. Fatehi Marji, I. Dehghani, Kinked crack analysis by a hybridized boundary element/boundary collocationn method, International Journal of Solids and Structures 47 (2010) 922–933.
  • [27] M. Fatehi Marji, H. Hosseini-nasab, A.H. Kohsary, Anew cubic element formulation of the displacement discontinuity method using three special crack tip elements for crack analysis, JP Journal of Solids and Structures 43 (2007) 61–91.
  • [28] C.A. Tang, P. Lin, R.H.C. Wong, K.T. Chau, Analysis of crack coalescence inrock-likematerials containing three flaws— Part II: Numerical approach, International Journal of Rock Mechanics and Mining Sciences 38 (2001) 925–939.
  • [29] W. Ma, X.J. Wang, F.Ren, Numerical simulation of compressive failure of heterogeneous rock-like materials using SPH method, International Journal of Rock Mechanics & Mining Sciences 48 (2011) 353–363.
  • [30] S. Nohut, Prediction of crack-tip toughness of alumina for given residual stresses with parallel-bonded-particle model, Computational Materials Science 50 (2011) 1509–1519.
  • [31] J.S. Yoon, et al., Simulatin fracture and friction of Aue granite under confined asymmetric compressive testusing clumped particle model, International Journal of Rock Mechanics & Mining Sciences 49 (2012) 68–83.
  • [32] M.S. Asadi, V. Rasouli, G. Barla, Abonded particle model simulation of shear strength and asperity degradation for rough rock fractures, Rock Mechanics and Rock Engineering (2012) http://dx.doi.org/10.1007/s00603-012-0231-4.
  • [33] G.R. Irwin, Analysis of stress and strain near end of a crack traversing a plate, Journal of Applied Mechanics 79 (1957) 361–364.
  • [34] E.E. Gdoutos, Strain energy density failure criterion: mixed- mode crack growth, Fracture Mechanics, Springer, Netherlands. p.195–238.
  • [35] D.O. Potyondy, P.A. Cundall, Abonded-particle model for rock, International Journal of Rock Mechanics and Mining Sciences 41 (2004) 1329–1364.
  • [36] C.G. Itasca,Users'Manual for Particie Flow Codein 2 Dimensions (PFC2D),Version 3.1, Minneapolis Minnesota, 2002.
  • [37] N. Cho, C.D. Martin, D.C. Sego, A clumped particle model for rock, International Journal of Rock Mechanics and Mining Sciences 44 (2007) 997–1010.
  • [38] J. Yoon, Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation, International Journal of Rock Mechanics and Mining Sciences 44 (2007) 871–889.
  • [39] H. Kupfer, H.K. Hilsdorf, H. Rusch, Behaviour of concrete under biaxialstresses, ACI Journal 66 (1969) 656–666.
  • [40] M.A. Tayler, A.K. Jain, M.R. Ramey, Path dependent biaxial compressive testing of an all-light weight aggregate concrete, Journal of American Concrete Institute 69 (1972) 758–764.
  • [41] E.T. Brown, Fracture of rock under biaxial compression, in: Advances in Rock Mechanics, Proceedings of the 3rd Congress of the International Society of Rock Mechanics, Denver, vol. 2A, National Academy Science, Washington (DC), 1974, pp.111–117.
  • [42] E. Papamichos, J.F. Labuz, I. Vardoulakis, A surface instability detection apparatus, Rock Mechanics and Rock Engineering 27 (1994) 37–56.
  • [43] K. Mogi, Effects of intermediate principal stress on rock failure, Journal of Geophysics Research 72 (1967) 5117–5131.
  • [44] E. Sahouryeh, A.V. Dyskin, Crack growth under biaxial compression, Engineering Fracture Mechanics 69 (2001) 2187–2198.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8751827e-7071-452b-83ae-68951cfbcd71
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.