PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Smart Cellular Systems with Pressure Dependent Poisson’s Ratios

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Poisson’s ratio behaviour of cellular systems which change their internal features when subjected to pressure change to become a “re-entrant” or “non-re-entrant” honeycomb was investigated. It was shown, through finite elements simulations, that these changes in geometry permit the systems to exhibit a wide range of Poisson’s ratios, the magnitude and sign of which can be controlled through the external pressure. Auxetic behaviour was also shown to be obtainable at specific pressures with the right combination of design and materials.
Twórcy
autor
  • Metamaterials Unit, Faculty of Science University of Malta, Msida, MSD 2080, Malta
autor
  • Department of Chemistry University of Malta Junior College, Msida, MSD 1252, Malta
autor
  • Metamaterials Unit, Faculty of Science University of Malta, Msida, MSD 2080, Malta
  • Metamaterials Unit, Faculty of Science University of Malta, Msida, MSD 2080, Malta
autor
  • Metamaterials Unit, Faculty of Science University of Malta, Msida, MSD 2080, Malta
  • Department of Chemistry, Faculty of Science University of Malta, Msida, MSD 2080, Malta
Bibliografia
  • [1] L.J. Gibson, M. Ashby, Cellular solids: Structure & properties, Oxford, Pergamon Press (1988).
  • [2] K.E. Evans, M.A. Nkansah, I.G. Hutchinson, S.C. Rogers, Molecular Network Design, Nature 353, 124 (1991).
  • [3] K.E. Evans, A. Alderson, Auxetic Materials: Functional Materials and Structures from Lateral Thinking!, Adv. Mater. 12, 617–628 (2000).
  • [4] K.W.Wojciechowski, Two-dimensional isotropic system with a negative Poisson ratio, Physics Letters A 137(1–2), 60–64 (1989).
  • [5] R. Lakes, Advances in negative Poisson’s ratio materials, Adv. Mater. 5, 293–296 (1993).
  • [6] C. He, P. Liu, A.C. Griffin, Toward Negative Poisson Ratio Polymers through Molecular Design, Macromolecules 31, 3145–3147 (1998).
  • [7] F. Scarpa, P.J. Tomlin, On the transverse shear modulus of negative Poisson’s ratio honeycomb structures, FATIGUE Fract. Eng. Mater. Struct. 23, 717–720 (2000).
  • [8] A. Alderson, K.E. Evans, Molecular origin of auxetic behavior in tetrahedral framework silicates, Phys. Rev. Lett. 89, 225503 (2002).
  • [9] K.L. Alderson, A. Alderson, G. Smart, V.R. Simkins, P.J. Davies, Auxetic polypropylene fibres: Part 1 – Manufacture and characterisation, Plast. Rubber Compos. 31, 344–349 (2002).
  • [10] E.A. Friis, R.S. Lakes, J.B. Park, Negative Poisson’s ratio polymeric and metallic foams, J. Mater. Sci. 23, 4406–4414 (1998).
  • [11] T. Bückmann, R. Schittny, M. Thiel, M. Kadic, G.W. Milton, M. Wegener, On three-dimensional dilational elastic metamaterials, New J. Phys. 16, 33032 (2014).
  • [12] A. Alderson, K.E. Evans, Microstructural modelling of auxetic microporous polymers, J. Mater. Sci. 30, 3319–3332 (1995).
  • [13] A.C. Branka, D.M. Heyes, K.W. Wojciechowski, Auxeticity of cubic materials under pressure, Phys. Stat. Sol. B 248, 96–104 (2011).
  • [14] K.L. Alderson, R.S. Webber, K.E. Evans, Microstructural evolution in the processing of auxetic microporous polymers, Phys. Stat. Sol. B 244, 828–841 (2007).
  • [15] N. Chan, K.E. Evans, Fabrication methods for auxetic foams, J. Mater. Sci. 32, 5945–5953 (1997).
  • [16] J. Valente, E. Plum, I.J. Youngs, N.I. Zheludev, Nanoand Micro-Auxetic Plasmonic Materials, Adv. Mater. 28, 5176–5180 (2016).
  • [17] X. Li, Q. Wang, Z. Yang, Z. Lu, Novel auxetic structures with enhanced mechanical properties, Extrem. Mech. Lett. 27, 59–65 (2019).
  • [18] J.N. Grima-Cornish, J.N. Grima, K.E. Evans, On the Structural and Mechanical Properties of Poly(Phenylacetylene) Truss-Like Hexagonal Hierarchical Nanonetworks, Phys. Stat. Sol. B 254, 1700190 (2017).
  • [19] C. Lira, F. Scarpa, Transverse shear stiffness of thickness gradient honeycombs, Compos. Sci. Technol. 70, 930–936 (2010).
  • [20] D.H. Chen, Bending deformation of honeycomb consisting of regular hexagonal cells, Compos. Struct. 93, 736–746 (2011).
  • [21] F.K. Abd El-Sayed, R. Jones, I.W. Burgess, A theoretical approach to the deformation of honeycomb based composite materials, Composites 10, 209–214 (1979).
  • [22] K.E. Evans, A. Alderson, F.R. Christian, Auxetic twodimensional polymer networks. An example of tailoring geometry for specific mechanical properties, J. Chem. Soc. Faraday Trans. 91, 2671 (1995).
  • [23] D. Attard, J.N. Grima, Modelling of hexagonal honeycombs exhibiting zero Poisson’s ratio, Phys. Stat. Sol. B 248, 52–59 (2011).
  • [24] J.N. Grima, K.E. Evans, Self expanding molecular networks, Chem. Commun. 16, 1531–1532 (2000).
  • [25] J. Huang, Q. Zhang, F. Scarpa, Y. Liu, J. Leng, In-plane elasticity of a novel auxetic honeycomb design, Compos. Part BEngineering 110, 72–82 (2017).
  • [26] I.G. Masters, K.E. Evans, Models for the elastic deformation of honeycombs, Compos. Struct. 35, 403–422 (1996).
  • [27] E.P. Degabriele, J.N. Grima-Cornish, D. Attard, R. Caruana-Gauci, R. Gatt, K.E. Evans, J.N. Grima, On the Mechanical Properties of Graphyne, Graphdiyne, and Other Poly(Phenylacetylene) Networks, Phys. Stat. Sol. B 254, 1700380 (2017).
  • [28] L. Mizzi, D. Attard, A. Casha, J.N. Grima, R. Gatt, On the suitability of hexagonal honeycombs as stent geometries, Phys. Stat. Sol. B 251, 328–337 (2014).
  • [29] T. Strek, H. Jopek, K.W. Wojciechowski, The influence of large deformations on mechanical properties of sinusoidal ligament structures, Smart Mater. Struct. 25, 054002 (2016).
  • [30] A.M. Strek, Production and study of polyether auxetic foam, Mech. Control 29, 78–87 (2010).
  • [31] K. Boba, M. Bianchi, G. McCombe, R. Gatt, A.C. Griffin, R.M. Richardson, F. Scarpa, I. Hamerton, J.N. Grima, Blocked Shape Memory Effect in Negative Poisson’s Ratio Polymer Metamaterials, ACS Appl. Mater. Interfaces 31, 20319–20328 (2016).
  • [32] T.C. Lim, Torsion of semi-auxetic rods, J. Mater. Sci. 46, 6904–6909 (2011).
  • [33] E. Pasternak, A.V. Dyskin, Materials and structures with macroscopic negative Poisson’s ratio, Int. J. Eng. Sci. 52, 103–114 (2012).
  • [34] H. Kimizuka, H. Kaburaki, Molecular dynamics study of the high-temperature elasticity of SiO2 polymorphs: Structural phase transition and elastic anomaly, Phys. Stat. Sol. B 242, 607–620 (2005).
  • [35] N.R. Keskar, J.R. Chelikowsky, Negative Poisson ratios in crystalline SiO2 from first-principles calculations, Nature 358, 222–224 (1992).
  • [36] A.C. Branka, D.M. Heyes, S. Mackowiak, S. Pieprzyk, K.W. Wojciechowski, Cubic materials in different auxetic regions: Linking microscopic to macroscopic formulations, Phys. Stat. Sol. B 249, 1373–1378 (2012).
  • [37] T. Allen, T. Hewage, C. Newton-Mann,W.Wang, O. Duncan, A. Alderson, Fabrication of Auxetic Foam Sheets for Sports Applications, Phys. Stat. Sol. B. 254, 1700596 (2017).
  • [38] T.C.T. Ting, D.M. Barnett, Negative Poisson’s Ratios in Anisotropic Linear Elastic Media, J. Appl. Mech. 72, 929–931 (2005).
  • [39] J.N. Grima, P.S. Farrugia, R. Gatt, D. Attard, On the auxetic properties of rotating rhombi and parallelograms: A preliminary investigation, Phys. Stat. Sol. B 245, 521 (2008).
  • [40] J.N. Grima, K.E. Evans, Auxetic behaviour from rotating squares, J. Mater. Sci. Lett. 19, 1562 (2000).
  • [41] K.W. Wojciechowski, Non-chiral, molecular model of negative Poisson ratio in two dimensions, J. Phys. A. 36, 11765–11778 (2003).
  • [42] K.W. Wojciechowski, A. Alderson, A. Branka, K.L. Alderson, Auxetics and Related Systems, Phys. Stat. Sol. B 242, 497–497 (2005).
  • [43] J. Narojczyk, K. Wojciechowski, Poisson’s Ratio of the f.c.c. Hard Sphere Crystals with Periodically Stacked (001)-Nanolayers of Hard Spheres of Another Diameter, Materials (Basel). 12, 700 (2019).
  • [44] A.A. Pozniak, K.W. Wojciechowski, Poisson’s ratio of rectangular anti-chiral structures with size dispersion of circular nodes, Phys. Stat. Sol. B 251, 367–374 (2014).
  • [45] G.N. Greaves, A.L. Greer, R.S. Lakes, T. Rouxel, Poisson’s ratio and modern materials, Nat. Mater. 10, 823–837 (2011).
  • [46] W.G. Hoover, C.G. Hoover, Searching for auxetics with DYNA3D and ParaDyn, Phys. Stat. Sol. B 242, 585–594 (2005).
  • [47] O. Sigmund, Tailoring materials with prescribed elastic properties, Mech. Mater 20, 351–368 (1995).
  • [48] K.K. Dudek, D. Attard, R. Gatt, J.N. Grima-Cornish, J.N. Grima, The Multidirectional Auxeticity and Negative Linear Compressibility of a 3D Mechanical Metamaterial, Materials 13, 2193 (2020).
  • [49] K.K. Dudek, R. Gatt, M.R. Dudek, J.N. Grima, Negative and positive stiffness in auxetic magneto-mechanical metamaterials, Proc. Roy. Soc. A 474, 20180003 (2018).
  • [50] T.S. Maruszewski, K.W. Wojciechowski, Anomalous deformation of constrained auxetic square, Rev. Adv. Mater. Sci 23, 169–174 (2010).
  • [51] K.K. Dudek, R. Gatt, K.W.Wojciechowski, J.N. Grima, Selfinduced global rotation of chiral and other mechanical metamaterials, Int. J. Sol. & Str. 191, 212–219 (2020).
  • [52] M.R. Dudek, K.K. Dudek, W. Wolak, K.W. Wojciechowski, J.N. Grima, Magnetocaloric materials with ultra-small magnetic nanoparticles working at room temperature, Sci. Rep. 9, 1–10 (2019).
  • [53] K.K. Dudek, K.W. Wojciechowski, M.R. Dudek, R. Gatt, L. Mizzi, J.N. Grima, Potential of mechanical metamaterials to induce their own global rotational motion, Smart Mater. Struct. 27, 055007 (2018).
  • [54] J.N. Grima, M.C. Grech, J.N. Grima-Cornish, R. Gatt, D. Attard, Giant Auxetic Behaviour in Engineered Graphene, Ann. Phys. 530, 1700330 (2018).
  • [55] R. Cauchi, D. Attard, J.N. Grima, On the mechanical properties of centro-symmetric honeycombs with T-shaped joints, Phys. Stat. Sol. B 250, 2002–2011 (2013).
  • [56] R. Gatt, R. Cauchi, J.N. Grima, Honeycomb metameterials exhibiting anomalous mechanical and thermal properties, Mechanics of Nano, Micro and Macro Composite Structures, Politecnico di Torino (2012).
  • [57] R. Cauchi, Ph.D. Thesis, University of Malta (2013).
  • [58] R. Cauchi, D. Attard, J.N. Grima, On the thermal and compressibility properties of smart honeycombs with Tshaped joints and related systems, Proceedings of the 11th Conference on Functional and Nanostructured Materials (FNMA’14), Camerino, Italy (2014).
  • [59] R. Cauchi, D. Attard, J.N Grima-Cornish, J.N. Grima, On the Design of Multi-Material Honeycombs and Structures with TShaped Joints Having Tuneable Thermal and Compressibility Properties, Phys. Stat. Sol. B (2020, in press).
  • [60] J.N. Grima-Cornish, R. Cauchi, D. Attard, R. Gatt, J.N. Grima, Smart honeycomb “mechanical metamaterials” with tuneable Poisson’s ratios, Phys. Stat. Sol. B (2020, in press).
  • [61] T.C. Lim, A class of shape-shifting composite metamaterial honeycomb structures with thermally-adaptive Poisson’s ratio signs, Compos. Struct. 226, 111256 (2019).
  • [62] C.S. Ha, M.E. Plesha, R.S. Lakes, Chiral three-dimensional lattices with tunable Poisson’s ratio, Smart Mater. Struct. 25, 054005 (2016).
  • [63] J.N. Grima-Cornish, J.N. Grima, D. Attard, Negative Mechanical Materials and Metamaterials: Giant Out-of-Plane Auxeticity from Multi-Dimensional Wine-Rack-like Motifs, MRS Advances 5, 717–725 (2020).
  • [64] P.S. Farrugia, R. Gatt, J.N. Grima-Cornish, J.N. Grima, Tuning the Mechanical Properties of the Anti-Tetrachiral System Using Nonuniform Ligament Thickness, Phys. Stat. Sol. B (2020, in press).
  • [65] J.N. Grima-Cornish, J.N. Grima, D. Attard, A Novel Mechanical Metamaterial Exhibiting Auxetic Behavior and Negative Compressibility, Materials 13, 79 (2020).
  • [66] J.N. Grima-Cornish, L. Vella- ˙ Zarb, J.N. Grima, Negative Linear Compressibility and Auxeticity in Boron Arsenate, Ann. Phys. 532, 1900550 (2020).
  • [67] B. Moore, T. Jaglinski, D.S. Stone, R.S. Lakes, On the bulk modulus of open cell foams, Cell. Polym. 26, 1–10 (2007).
  • [68] T.C. Lim, 2D Structures Exhibiting Negative Area Compressibility, Phys. Stat. Sol. B 254, 1600682 (2017).
  • [69] A.B. Cairns, A.L. Goodwin, Negative linear compressibility, Phys. Chem. Chem. Phys. 17, 20449–20465 (2015).
  • [70] A.B Cairns, J. Catafesta, C. Levelut, J. Rouquette, A. Lee, L. Peters, A.L. Thompson, V. Dmitriev, J. Haines, A.L Goodwin, Giant negative linear compressibility in zinc dicyanoaurate, Nat. Mater. 12, 212–216 (2013).
  • [71] R. Gatt, J.N. Grima, Negative compressibility, Phys. Stat. Sol. RRL 2, 236–238 (2008).
  • [72] J.N. Grima, D. Attard, R. Gatt, Truss-type systems exhibiting negative compressibility, Phys. Stat. Sol. B 245, 2405–2414 (2008).
  • [73] J.B. Choi, R.S. Lakes, Analysis of elastic modulus of conventional foams and of re-entrant foam materials with a negative Poisson’s ratio, Int. J. Mech. Sci. 37, 51–59 (1995).
  • [74] E.P. Degabriele, D. Attard, J.N. Grima-Cornish, R. Caruana-Gauci, R. Gatt, K.E. Evans, J.N. Grima, On the Compressibility Properties of the Wine-Rack-Like Carbon Allotropes and Related Poly(phenylacetylene) Systems, Phys. Stat. Sol. B 256, 1800572 (2019).
  • [75] R.H. Baughman, S. Stafström, C. Cui, S.O. Dantas, Materials with negative compressibilities in one or more dimensions, Science 279, 1522–1524 (1998).
  • [76] J. Qu, M. Kadic, M.Wegener, Poroelastic metamaterials with negative effective static compressibility, Appl. Phys. Lett. 110, 171901 (2017).
  • [77] R.S. Lakes, K.W. Wojciechowski, Negative compressibility, negative Poisson’s ratio, and stability, Phys. Stat. Sol. B 245, 545–551 (2008).
  • [78] C.J.C. Heath, R.M. Neville, F. Scarpa, I.P. Bond, K.D. Potter, Morphing hybrid honeycomb (MOHYCOMB) with in situ Poisson’s ratio modulation, Smart Mater. Struct. 25, 085008 (2016).
  • [79] K. Liu, J.Wu, G.H. Paulino, H.J. Qi, Programmable Deployment of Tensegrity Structures by Stimulus Responsive Polymers, Sci. Rep. 7, 3511 (2017).
  • [80] T.C. Lim, A Negative Hygroscopic Expansion Material, Materials Science Forum 928, 277–282 (2019).
  • [81] S. Timoshenko, Analysis of Bi-Metal Thermostats, J. Opt. Soc. Am. 11, 233–255 (1925).
  • [82] R. Gatt, D. Attard, J.N. Grima, On the behaviour of bimaterial strips when subjected to changes in external hydrostatic pressure, Scr. Mater. 60, 65–67 (2009).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8750d3fa-0ede-43f9-949b-6a8393d1b814
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.