PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Raman Spectroscopy in the investigations of indexable knives for woodbased materials machining

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Raman spectroscopy for examination of WC-Co tools in wood-base machining. An attempt is undertaken to apply Raman Spectroscopy for examination of WC-Co tools for wood-base machining. The virgin tools were compared with those implanted with nitrogen, modified by electron beam and plasma beam pulses. The preliminary results suggest a possibility of applying this method for fast, non-destructive analysis of phase composition and phase changes in the microstructure of the investigated tools.
PL
Spektroskopia Ramana w badaniach narzędzi WC-Co wykorzystywanych w obróbce materiałów drzewnych. W pracy podjęto próbę zastosowania Spektroskopii Ramana w badaniach wymiennych noży WC-Co, stosowanych do obróbki materiałów drewnopochodnych. Przeanalizowano narzędzia niezmodyfikowane, implantowane jonami azotu, poddane działaniu impulsów elektronowych i plazmowych. Wstępne wyniki sugerują możliwość zastosowania tej metody do szybkiej i nieniszczącej analizy składu fazowego i zmian fazowych w mikrostrukturze badanych narzędzi.
Twórcy
autor
  • Plasma/Ion Beam Technology Division, Material Physics Department, National Centre for Nuclear Research Świerk, 7 Andrzeja Sołtana St., 05-400 Otwock, Poland
  • Department of Mechanical Processing of Wood, Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences, 159 Nowoursynowska St., 02-776 Warsaw, Poland
  • Plasma/Ion Beam Technology Division, Material Physics Department, National Centre for Nuclear Research Świerk, 7 Andrzeja Sołtana St., 05-400 Otwock, Poland
  • Plasma/Ion Beam Technology Division, Material Physics Department, National Centre for Nuclear Research Świerk, 7 Andrzeja Sołtana St., 05-400 Otwock, Poland
  • Plasma/Ion Beam Technology Division, Material Physics Department, National Centre for Nuclear Research Świerk, 7 Andrzeja Sołtana St., 05-400 Otwock, Poland
  • Plasma/Ion Beam Technology Division, Material Physics Department, National Centre for Nuclear Research Świerk, 7 Andrzeja Sołtana St., 05-400 Otwock, Poland
Bibliografia
  • 1. ABBAS R.K., MUSA K.M., 2019: Using Raman shift and FT-IR spectra as quality indices of oil bit PDC cutters, Petroleum, 5; 329-334. DOI: 10.1016/j.petlm.2018.10.003
  • 2. BARLAK M., 2010: High intensity plasma pulses in ceramic wettability improvement, Instytut Problemów Jądrowych im. Andrzeja Sołtana. ISBN: 978-83-931455-0-8
  • 3. BARLAK M., OLESIŃSKA W., PIEKOSZEWSKI J., CHMIELEWSKI M., JAGIELSKI J., KALIŃSKI D., WERNER Z., SARTOWSKA B., 2005: Ion implantation as a pre-treatment method of AlN substrate for direct bonding with copper, Vacuum 78; 205-209. DOI: 10.1016/j.vacuum.2005.01.027
  • 4. BARLAK M., WILKOWSKI J., SZYMANOWSKI K., CZARNIAK P., PODZIEWSKI P., WERNER Z., ZAGÓRSKI J., STASZKIEWICZ B., 2019: Influence of the ion implantation of nitrogen and selected metals on the lifetime of WC-Co indexable knives during MDF machining., Annals of Warsaw University of Life Sciences - SGGW, Forestry and Wood Technology, 108; 45-52.
  • 5. BARLAK M., WILKOWSKI J., WERNER Z., STASZKIEWICZ B., ZAGÓRSKI J., ZIÓŁKOWSKI K., 2020a: Biuletyn Informacyjny OB-RPPD, 3-4; 167-177. 10.32086/biuletyn.2020.07, in Polish
  • 6. BARLAK M., WILKOWSKI J., WERNER Z., ZAGÓRSKI J., STASZKIEWICZ B., SZKARŁAT F., 2020b: The influence of the CO2 ion implantation on the life-time of WC-Co tools used in wood materials machining, Biuletyn Informacyjny OB-RPPD, 34; 178-187. 10.32086/biuletyn.2020.08, in Polish
  • 7. CHEONG Y.-K., CALVO-CASTRO J., CIRIC L., EDIRISINGHE M., CLOUTMANGREEN E., ILLANGAKOON U.E., KANG Q., MAHALINGAM S., MATHARU R.K., WILSON R.M., REN G., 2017: Characterisation of the chemical composition and structural features of novel antimicrobial nanoparticles, Nanomaterials, 7; 152. DOI: 10.3390/nano7070152
  • 8. CHMIELEWSKI M., NOSEWICZ S., KURPASKA Ł., ROMELCZYK B., 2016: Evolution of material properties during the sintering process of Cr-Re-Al2O3 composites, Composites Part B, 98; 88-96. DOI: 10.1016/j.compositesb.2016.04.065
  • 9. CHMIELEWSKI M., PIETRZAK K., TEODORCZYK M., NOSEWICZ S., JARZĄBEK D., ZYBAŁA R., BAZARNIK P., LEWANDOWSKA M., STROJNY-NEDZA A., 2017: Effect of metallic coating on the properties of copper-silicon carbide composites, Applied Surface Science, 421A; 159-169. DOI: 10.1016/j.apsusc.2016.12.130
  • 10. DEBUS J., SCHINDLER J.J., WALDKIRCH P., GOEKE S., BRÜMMER A., BIERMANN D., BAYER M., 2016: Indication of worn WC/C surface locations of a dry-running twin-screw rotor by the oxygen incorporation in tungsten-related Raman modes, Applied Physics Letters 109; 171601. DOI: 10.1063/1.4966145
  • 11. GENG Z., LI S., DUAN D.L., LIU Y., 2015: Wear behaviour of WC-Co HVOF coatings at different temperatures in air and argon, Wear, 330-331; 348-353. DOI: 10.1016/j.wear.2015.01.035
  • 12. GRANADOS-FITCH M.G., QUINTANA-MELGOZA J.M., JUAREZ-ARELLANO E.A., AVALOS-BORJA M., 2019: Degradation of rhenium carbide obtained by mechanochemical synthesis at oxygen and moisture environmental conditions, Materials Chemistry and Physics, 229; 15-21. DOI: 10.1016/j.matchemphys.2019.02.088
  • 13. HÄRMAS R., PALM R., KURIG H., PUUSEPP L., PFAFF T., ROMANN T., ARUVÄLI J., TALLO I., THOMBERG T., JÄNES A., LUST E., 2021: Carbide-derived carbons: WAXS and Raman spectra for detailed structural analysis, Journal of Carbon Research, 7; DOI: 10.3390/c7010029
  • 14. KAMDI Z., VOISEY K.T., 2015: Characterization of WC-Co coatings corrosion product by Raman Spectroscopy, Advanced Materials Research, 1087; 379-383. DOI: 10.4028/www.scientific.net/AMR.1087.379
  • 15. KATIYAR P.K., RANDHAWA N.S., 2019: Corrosion behavior of WC-Co tool bits in simulated (concrete, soil, and mine) solutions with and without chloride additions, International Journal of Refractory Metals and Hard Materials, 85; 105062. DOI: 10.1016/j.ijrmhm.2019.105062
  • 16. KOŁODZIEJCZAK P., WILKOWSKI J., BARLAK M., CZARNIAK P., WERNER Z., ZAGÓRSKI J., 2017: Modification of the surfaces of wood cutting tools using CO2 laser - SEM analysis, Annals of Warsaw University of Life Sciences - SGGW, Forestry and Wood Technology, 98; 48-52.
  • 17. KOSIŃSKA A., JAGIELSKI J., WILCZOPOLSKA M., BIELIŃSKI D., OKRASKA M., JÓŹWIK I., KURPASKA L., NOWAKOWSKA-LANGIER K., 2020: Study of the electrical properties of ion irradiated polymer materials, Surface and Coatings Technology, 388; 125562. DOI: 10.1016/j.surfcoat.2020.125562
  • 18. LIU Y., CHENG J., YIN B., ZHU S., QIAO Z., YANG J., 2017: Study of the tribological behaviors and wear mechanisms of WC-Co and WC-Fe3Al hard materials under dry sliding condition, Tribology International, 109; 19-25. DOI: 10.1016/j.triboint.2016.12.023
  • 19. MOROZOW D., BARLAK M., WERNER Z., PISAREK M., KONARSKI P., ZAGÓRSKI J., RUCKI M., CHAŁKO L., ŁAGODZIŃSKI M., NAROJCZYK J., KRZYSIAK Z., CABAN J., 2021: Wear resistance improvement of cemented tungsten carbide deep-hole drills after ion implantation, Materials, 14; 239. 10.3390/ma14020239
  • 20. MRABET S.E., ABAD M.D., LÓPEZ-CARTES C., MARTÍNEZ-MARTÍNEZ D., SÁNCHEZ-LÓPEZ J.C., 2009: Thermal evolution of WC/C nanostructured coatings by Raman and in situ XRD analysis, Plasma Processes and Polymers, 6; S444-S449. DOI: 10.1002/ppap.200931004
  • 21. MYALSKA H., LUSVARGHI L., BOLELLI G., SASSATELLI P., MOSKAL G., 2019: Tribological behavior of WC-Co HVAF-sprayed composite coatings modified by nano-sized TiC addition, Surface and Coatings Technology, 371; 401-416. DOI: 10.1016/j.surfcoat.2018.09.017
  • 22. OLESIŃSKA W., KALIŃSKI D., CHMIELEWSKI M., DIDUSZKO R., WŁOSIŃSKI W., 2006: Influence of titanium on the formation of a “barrier” layer during joining an AlN ceramic with copper by the CDB technique, Journal of Materials Science: Materials in Electronics 17; 781-788. DOI: 10.1007/s10854-006-0024-1
  • 23. SHEN Y., LI L., XI J., QIU X., 2016: A facile approach to fabricate free-standing hydrogen evolution electrodes: riveting tungsten carbide nanocrystals to graphite felt fabrics by carbon nanosheets, Journal of Materials Chemistry A, 4; 5817-5822. DOI: 10.1039/c6ta01236a
  • 24. TORGERSON T.B., HARRIS M.D., ALIDOKHT S.A., SCHARF T.W., AOUADI S.M., CHROMIK R.R., ZABINSKI J.S., VOEVODIN A.A., 2018; Room and elevated temperature sliding wear behavior of cold sprayed Ni-WC composite coatings, Surface and Coatings Technology, 350; 136-145. DOI: 10.1016/j.surfcoat.2018.05.090
  • 25. VEERAKUMAR P., THANASEKARAN P., LIN K.-Ch., LIU S.-B., 2017: Well-dispersed rhenium nanoparticles on three-dimensional carbon nanostructures: Efficient catalysts for the reduction of aromatic nitro compounds, Journal of Colloid and Interface Science, 506; 271-282. DOI: 10.1016/j.jcis.2017.07.065
  • 26. WILCZOPOLSKA M., NOWAKOWSKA-LANGIER K., OKRASA S., SKOWRONSKI L., MINIKAYEV R., STRZELECKI G.W., CHODUN R., ZDUNEK K., 2021: Synthesis of copper nitride layers by the Pulsed Magnetron Sputtering method carried out under various operating conditions, Materials, 14; 2694. DOI: 10.3390/ma14102694
  • 27. WILKOWSKI J., BARLAK M., WACHOWICZ J., BÖTTGER R., WERNER Z., 2018: The wear curves of nitrogen-implanted WC-Co indexable knives during particleboard milling, Annals of Warsaw University of Life Sciences - SGGW, Forestry and Wood Technology, 104; 395-399.
  • 28. WILKOWSKI J., BARLAK M., WERNER Z., ZAGÓRSKI J., CZARNIAK P., PODZIEWSKI P., SZYMANOWSKI K., 2019: Technical note: Lifetime improvement and the cutting forces in nitrogen-implanted drills during wood-based material machining, Wood and Fiber Science, 51; 1-12. DOI: 10.22382/wfs-2019-021
  • 29. WILKOWSKI J., BARLAK M., JAŁOCHA R., WERNER Z., AURIGA A., 2020: Analysis of sliding friction of WC-Co composite on particleboard, Annals of Warsaw University of Life Sciences - SGGW, Forestry and Wood Technology, 111; 60-67.
  • 30. WILKOWSKI J., BARLAK M., BÖTTGER R., WERNER Z., KONARSKI P., PISAREK M., WACHOWICZ J., VON BORANY J., AURIGA A., 2021: Effect of nitrogen ion implantation on the life time of WC-Co tools used in particleboard milling, Wood Material Science and Engineering, 10.1080/17480272.2021.1900391
  • 31. WERNER Z., BARLAK M., RATAJCZAK R., KONARSKI P., MARKOV A., HELLER R., 2016: Electron-beam pulse annealed Ti-implanted GaP, Journal of Applied Physics, 120; 085103. DOI: 10.1063/1.4961518
  • 32. WERNER Z., BARLAK M., DŁUŻEWSKI P., HELLER R., PISAREK M., MARKOV A., PROSKUROWSKY D., 2020: Crystallographic changes in electron pulse annealing of Ti-implanted GaP, Radiation Effects and Defects in Solids, 175; 719-729. DOI: 10.1080/10420150.2020.1756814
  • 33. ZKRIA A., HAQUE A., EGIZA M., ABUBAKR E., MURASAWA K., YOSHITAKE T., NARAYAN J., 2019: Laser-induced structure transition of diamond-like carbon coated on cemented carbide and formation of reduced graphene oxide, MRS Communications, 1-6. DOI: 10.1557/mrc.2019.88
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8750c8f2-1d58-48b9-8254-271af7ff3b37
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.