Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Fire disasters are very serious problems that may cause damages to ecological systems, infrastructure, properties, and even a threat to human lives; therefore, detecting fires at their earliest stage is of importance. Inspired by the technological advancements in artificial intelligence and image processing in solving problems in different applications, this encourages adopting those technologies in reducing the damage and harm caused by fire. This study attempts to propose an intelligent fire detection method by investigating three approaches to detect fire based on three different color models: RGB, YCbCr, and HSV are presented. The RGB method is applied based on the relationship among the red, green and blue values of pixels in images. In the YCbCr color model, image processing and machine learning techniques are used for morphological processing and automatic recognition of fire images. Whereas for the HSV supervised machine learning techniques are adopted, namely decision rule and Gaussian mixture model (GMM). Further, the expectation maximization (EM) algorithm is deployed for the GMM parameters estimation. The three proposed models were tested on two data sets, one of which contains fire images, the other consists of non-fire images with some having fire-like colors to test the efficiency of the proposed methods. The experimental results showed that the overall accuracies on two data sets for the RGB, YCbCr, and HSV methods were satisfactory and were efficient in detecting outdoor and indoor fires.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
197--214
Opis fizyczny
Bibliogr. 15 poz., fig., tab.
Twórcy
autor
- Computer Engineering Department, Umm Al-Qura University, Saudi Arabia
Bibliografia
- 1. Yu C. Mei Z. Zhang X. A Real-Time Video Fire Flame and Smoke Detection Algorithm. Procedia Engineering. 2013;62:891–898. DOI: 10.1016/j. proeng.2013.08.140
- 2. Gong F., Li C., Gong W., Li X., Yuan X., Ma Y., Song T. A Real-Time Fire Detection Method from Video with Multifeature Fusion. Computational Intelligence and Neuroscience. 2019;1687-5265. DOI: 10.1155/2019/1939171
- 3. Töreyin B., Dedeoglu,Y., Gudukbay U., Cetin A. Computer Vision Based Method for Real-Time Fire and Flame Detection. Pattern Recognition Letters. 2005;27:49–58. DOI: 10.1016/j.patrec.2005.06.015
- 4. Appana D., Islam R., Khan S., Kim J. A VideoBased Smoke Detection Using Smoke Flow Pattern and Spatial-Temporal Energy Analyses for Alarm Systems. Information Sciences. 2017;418-419:91101, DOI:10.1016/j.ins.2017.08.001
- 5. Celik T. Fast And Efficient Method for Fire Detection Using Image Processing. ETRI Journal. 2010;6:881–890. DOI:10.4218/etrij.10.0109.0695
- 6. Hsu T., Pare S., Meena S., Jain D., Li D., Saxena A., Prasad M., Lin C. An Early Flame Detection System Based on Image Block Threshold Selection Using Knowledge of Local and Global Feature Analysis. Sustainability. 2020;12(21):1-22. DOI:10.3390/su12218899
- 7. Celik T., Demirel H., Ozkaramanli H., Uyguroglu M. Fire Detection Using Statistical Color Model in Video Sequences. Journal of Visual Communication and Image Representation. 2007;18:176–158. DOI:10.1016/j.jvcir.2006.12.003
- 8. Yu Z., Xu Y., Yang X. Advances in multimedia modeling, Springer, Berlin Heidelberg. 2010;477–488.
- 9. Tong X., Li R., Ge L., Zhao L., Wang K. A New Edge Patch with Rotation Invariance for Object Detection and Pose Estimation, Sensors. 2020;20(3):887. DOI:10.3390/s20030887
- 10. Li Y., Wu W. Sequential Pattern Technology for Visual Fire Detection. Journal of Electronic Science and Technology. 2012;1:276–280. DOI:10.3969/j. issn.1674-862X.2012.03.014
- 11. Vipin V. Image Processing Based Forest Fire Detection. International Journal of Emerging Technology and Advanced Engineering. 2012;2:87–95. DOI:10.1155/2018/7612487
- 12. Valikhujaev Y., Abdusalomov A., Cho Y.I. Automatic Fire And Smoke Detection Method for Surveillance Systems Based on Dilated CNNs. Atmosphere. 2020;11(11):1241. DOI: 10.3390/atmos11111241
- 13. Hirsch R. Exploring colour photography: A complete guide. Laurence King, London, UK. 2004.
- 14. Yang M.H., Ahuja A. Gaussian mixture model for human skin color and its applications in image and video databases. Proceedings of Storage and Retrieval for Image and Video Databases Engineering (SPIE 99). 1999;3656:458–466.
- 15. Varma S., Behera V. Human Skin Detection Using Histogram Processing and Gaussian Mixture Model Based on Color Spaces. ICISS. 2017;116-120.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-874e0ba4-c662-4f8b-b479-11583a84824b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.