PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Diagnostic information analysis of quickly changing temperature of exhaust gas from marine diesel engine. Part i single factor analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, attention was paid to the problem of low controllability of marine medium- and high-speed engines during operation, which significantly limits the parametric diagnosis. The measurement of quickly changing temperature of engine exhaust gas was proposed, the courses of which can be a source of diagnostic information. The F statistic of the Fisher-Snedecor distribution was chosen as a statistical tool. Laboratory tests were carried out on the bench of a Farymann Diesel engine. The tests consisted of introducing the real changes in the constructional structure of the considered functional systems of the engine. Three changed parameters for the structure were reviewed: the active cross-sectional area of the inlet air channel, injector opening pressure and compression ratio. Based on the recorded plots of the quick-changing temperatures of the exhaust gases, three diagnostic measures were defined and subjected to statistical tests. The following data were averaged over one cycle for a 4-stroke piston engine operation, (1) the peakto-peak value of the exhaust gas temperature, (2) the specific enthalpy of the exhaust gas, and (3) the rate of increase and decrease in the values for the quick-changing exhaust gas temperature. In this paper will present results of the first stage of the elimination study: the one-factor statistical analysis (randomised complete plan). The next part will present the results of the second stage of studies: two-factor analysis (block randomised plan), where the significance of the effect of changing the values of the structure parameters on the diagnostic measures was analysed in the background of a variable engine load.
Rocznik
Tom
Strony
97--106
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
  • Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Dahlstrom J., Experimental Investigations of Combustion Chamber Heat Transfer in a Light-Duty Diesel Engine. 2016. Lund University. Thesis for the degree of Doctor of Technology.
  • 2. Debnath, B.K., Sahoo, N. and Saha, U. K., ‘Thermodynamic analysis of variable compression ratio diesel engine running with palm oil methyl ester’, Energy Conversion and Managment, vol. 65, pages 147-154. 2013. doi: 10.1016/j.enconman.2012.07.016
  • 3. Fennell D. A., Exhaust gas fuel reforming for improved gasoline direct injection engine efficiency and emissions. 2014. University of Birmingham. Ph.D.
  • 4. Fuente S.S., Reducing shipping carbon emissions under real operative conditions: a study of alternative marine waste heat recovery systems based on the organic rankine cycle. 2016. Ph.D.
  • 5. Jaremkiewicz M. and Taler, J., ‘Inverse determination of transient fluid temperature in pipelines’ Journal of Power Technologies, 96(6). p. 385-389. 2016.
  • 6. Jaremkiewicz M., Odwrotne zagadnienia wymiany ciepła, występujące w pomiarach nieustalonej temperatury płynow. Rozprawa doktorska. Wydawnictwo Politechniki Krakowskiej. 2011. [‘Inverse heat transfer issues occurring in transient fluid temperature measurements’. PhD dissertation.]
  • 7. Korczewski Z. and Puzdrowska P., ‘Analytical method of determining dynamic properties of thermocouples used in measurements of quick – changing temperatures of exhaust gases in marine diesel engines’ Combustion Engines, nr 162 (3), s. 300-306. 2015.
  • 8. Korczewski Z. and Zacharewicz M., ‘Alternative diagnostic method applied on marine diesel engines having limited monitoring susceptibility’ Transactions of the Institute of Measurement and Control, 34 (8), p. 937-946. 2012. doi: 10.1177/0142331211426170
  • 9. Korczewski, Z., Diagnostyka eksploatacyjna okrętowych silnikow spalinowych – tłokowych i turbinowych. Wybrane zagadnienia. Wydawnictwo Politechniki Gdańskiej. 2017. [‘Operational diagnostics of marine internal combustion engines - piston and turbine engines. Selected issues‘]
  • 10. Korczewski. ‘Test Method for Determining the Chemical Emissions of a Marine Diesel Engine Exhaust in Operation’, Polish Maritime Research, vol. 28, no. 3, 2021, doi: 10.2478/pomr-2021-0035.
  • 11. Korzyński, M., Metodyka eksperymentu. Planowanie, realizacja i statystyczne opracowanie wyników eksperymentów technologicznych. WNT. 2017. [‘Experimental methodology. Planning, execution and statistical processing of results of technological experiments‘]
  • 12. Kowalczyk M., Wybrane zagadnienia wymiany ciepła w silnikach wysokoprężnych - wymiana przez promieniowanie. Wydawnictwo Politechniki Poznańskiej. 2000. [‘Selected heat transfer issues in diesel engines - exchange by radiation‘]
  • 13. Kudrewicz J., Analiza funkcjonalna dla automatyków i elektroników. PWN. 1976. [‘Functional analysis for automation and electronics engineers‘]
  • 14. Linschoten P., Pressure and Temperature Measurements in a Heavy-Duty Diesel Engine. 2018. Master of Science Thesis
  • 15. Llamas X., Modeling and control of EGR on marine two-stroke diesel engines (Vol. 1904). 2018. Linkoping University Electronic Press. DOI: 10.3384/diss.diva-144596
  • 16. Marszałkowski K. and Puzdrowska P., ‘A laboratory stand for the analysis of dynamic properties of thermocouples’ Journal of Polish CIMEEAC, vol. 10, nr 1 (2015), s. 111 – 120. 2015.
  • 17. Mazur M., Jakościowa teoria informacji. WNT. Warszawa. 1970. [‘Qualitative information theory‘]
  • 18. Mijas, Ł. , Reiter, E. and Kukiełka, K., ‘Wykorzystanie systemu ANSYS Workbench do analizy statycznej korbowodów’ Autobusy: technika, eksploatacja, systemy transportowe. Instytut Naukowo-Wydawniczy ‘SPATIUM’ R. 14, nr 10 Str. 315-317. 2013. [‘Using ANSYS Workbench for static analysis of connecting rods’. Buses: technology, operations, transportation systems.]
  • 19. Morey F.and Seers P., ‘Comparison of cycle-by-cycle variation of measured exhaust - gas temperature and in - cylinder pressure measurements’ Applied Thermal Engineering, nr 30, str. 487 - 491. 2010. DOI: 10.1016/j.applthermaleng.2009.10.011
  • 20. Olczyk A., ‘Koncepcja pomiaru szybkozmiennej temperatury gazu z uwzględnieniem dynamicznej składowej temperatury’ Pomiary Automatyka Kontrola, 53 Bis/9, s. 576-579. 2007. [‘A concept for the measurement of rapidly varying gas temperature taking into account Automation Control]
  • 21. Pfriem H., ‘Zur Messung veranderlicher Temperaturen von Gasen Und Flussigkeiten’ Gen. Ingen., vol. 7, no. 2, pp. 85–92. 1936. [‘For measuring variable temperatures of gases and liquids‘]
  • 22. Polanowski S., ‘Studium metod analizy wykresów indykatorowych w aspekcie diagnostyki silników okrętowych’ Zeszyty Naukowe AMW, Nr 69 A. 2007. [‘Study of Indicator Chart Analysis Methods in the Aspect of Marine Engine Diagnostics‘]
  • 23. Polański Z., Planowanie doświadczeń w technice. PWN. 1984. [‘Planning experiments in technology‘]
  • 24. Puzdrowska P., ‘Determining the time constant using two methods and defining the thermocouple response to sine excitation of gas temperature’ Journal of Polish CIMEEAC – vol. 11, nr 1, s. 157 – 167. 2016.
  • 25. Puzdrowska P., ‘Signal filtering method of the fast-varying diesel exhaust gas temperature’ Combustion Engines, nr. 175(4), s.48-52. 2018. doi: 10.19206/CE-2018-407
  • 26. Puzdrowska, P., ‘Application of the F-statistic of the Fisher- Snedecor distribution to analyze the significance of the effect of changes in the compression ratio of a diesel engine on the value of the specific enthalpy of the exhaust gas flow’ Combustion Engines, 186, 80-88. 2021. doi: 10.19206/CE-141346
  • 27. Puzdrowska, P., ‘Evaluation of the significance of the effect of the active cross-sectional area of the inlet air channel on the specific enthalpy of the exhaust gas of a diesel engine using statistics F of the Fisher-Snedecor distribution’ Combustion Engines -Vol. 182, issue 3/2020, s.10-15. 2020. doi: 10.19206/CE-2020-302
  • 28. Roberts S. J., Stone R., et. al., ‘Instantaneous Exhaust Temperature Measurement Using Thermocouple Compensation Techniques’, SAE Technical Papers. 2004. doi: 10.4271/2004-01-1418
  • 29. Rutkowski S., Wykorzystanie dynamicznych pomiarów temperatur spalin wylotowych w diagnostyce okrętowych silników spalinowych, Kopia maszynopisu streszczenia artykułu z 1976 roku. 1976. [‘The use of dynamic measurements of exhaust gas temperatures in the diagnosis of marine internal combustion engines’, Typescript copy of an abstract of a 1976 paper]
  • 30. Shannon C. E., A mathematical theory of cryptography. A classified memorandum for Bell Telephone Labs. USA. 1945.
  • 31. Tagawa M. and Ohta Y., Two – ‘Thermocouple Probe for Fluctuating Temperature Measurement in Combustion - Rational Estimation of Mean and Fluctuating Time Constants’ Combustion and Flame, nr 109, str. 540-560. 1997. doi: 10.1016/S0010-2180(97)00044-8
  • 32. Wang and L. Yao, ‘Effect of Engine Speeds and Dimethyl Ether on Methyl Decanoate HCCI Combustion and Emission Characteristics Based on Low-Speed Two-Stroke Diesel Engine’, Polish Maritime Research, vol. 27, no. 2, 2020, doi: 10.2478/pomr-2020-0030.
  • 33. Wisłocki K., Studium wykorzystania badań optycznych do analizy procesów wtrysku i spalania w silnikach o zapłonie samoczynnym, Rozprawa habilitacyjna, Rozprawy nr 387, Wydawnictwo Politechniki Poznańskiej, 2004. [‘A study of the use of optical testing for the analysis of injection and combustion processes in compression ignition engines’, Habilitation dissertation.]
  • 34. Wiśniewski S., Termodynamika techniczna, WNT. 2005. [‘Technical thermodynamics‘]
  • 35. Witkowski K., ‘The Increase of Operational Safety of Ships Engine’ Transnav the International Journal on Marine Navigation and Safety of Sea Transportation, vol. 11, no 2. 2017. doi: 10.12716/1001.11.02.15
  • 36. Woś, P., Jaworski, A., Kuszewski, H., Lejda, K. and Ustrzycki, A., ‘Technical and operating problems yielded from setting up the optimum value of geometric compression ratio in piston engines’ Combustion Engines, Vol. 164, 1/2016, s. 3-14. 2016.
  • 37. Yang, Q. Tan, and P. Geng, ‘Combustion and Emissions Investigation on Low-Speed Two-Stroke Marine Diesel Engine with Low Sulfur Diesel Fuel’, Polish Maritime Research, vol. 26, no. 1, 2019, doi: 10.2478/pomr-2019-0017.
  • 38. Zacharewicz M., Metoda diagnozowania przestrzeni roboczych silnika okrętowego na podstawie parametrów Rozprawa doktorska. AMW. 2010. [‘A method for diagnosing the working spaces of a marine engine on the basis of gasodynamic parameters in the turbocharger feed channel’, PhD dissertation]
  • 39. Zhao et al., ‘A Numerical and Experimental Study of Marine Hydrogen-Natural Gas-Diesel Tri-Fuel Engines’, Polish Maritime Research, vol. 27, no. 4, 2020, doi: 10.2478/pomr-2020-0068.
  • REGULATIONS, NORMS
  • 1. International Association of Classification Societies, Requirements Concerning Machinery Installations. ‘M35: Alarms, remote indications and safeguards for main reciprocating I.C. engines installed in unattended machinery spaces’. 2016.
  • 2. International Association of Classification Societies, Requirements Concerning Machinery Installations. ‘M36: Alarms and safeguards for auxiliary reciprocatingI.C. engines driving generators in unattended machinery spaces’. 2016.
  • 3. International Association of Classification Societies, Requirements Concerning Machinery Installations. ‘M73: Turbochargers’. 2016
  • 4. Polski Rejestr Statków, Przepisy. Publikacja nr 5/P. ‘Wymagania dla turbosprężarek. Rozdział 2. Wymagana dokumentacja’. 2016[‘Requirements for turbochargers. Chapter 2 - Required documentation‘]
  • 5. Polski Rejestr Statków, Przepisy. Publikacja nr 28/P. ‘Proby silników spalinowych. Rozdział 1. Proba typu silników spalinowych. Rozdział 2. Proby zdawczo – odbiorcze silników spalinowych (szczegolnie podrozdział 2.2.2)’. 2019. [‘Internal combustion engine tests. Chapter 1: Type tests for internal combustion engines. Chapter 2: Acceptance tests of internal combustion engines (especially subchapter 2.2.2)‘]
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-874ddee6-c050-4cbc-b540-0693a1f095bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.