PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Polymer concrete filled with milled car windshield and GFRP waste

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper describes the process of preparing polymer concrete consisting of waste materials. The matrix was a poliester terephthalic resin produced from PET bottles, while the fillers were laminated car glass with PVB foil, as well as GFRP waste. The preparation of the fillers consisted in producing appropriate fraction sizes. Using a cross-beater mill, a fine fraction with an average size of 2 mm was obtained. The coarse fraction was achieved after the initial grinding process with a size greater than 2 mm. Two series of samples were created from the prepared materials, with different contents of resin, car glass and GFRP. The compression test and the three-point bending test showed that the obtained polymer concrete containing 1 vol.% GFRP has an average compressive strength of 51.75 MPa and an average flexural strength of 20.49 MPa. The polymer concrete with 2 vol.% GFRP showed an average compressive strength of 75.63 MPa and an average flexural strength of 17.89 MPa. The Archimedes method results showed that the samples with the amount of 1 vol.% GFRP reached 1.11% open porosity and the samples with 2 vol.% GFRP achieved 1.23%. The use of waste materials such as windshields with PVB foil and GFRP composites can be used as fillers in polymer concrete technology.
Rocznik
Strony
84--88
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Silesian University of Technology, Faculty of Materials Engineering, ul. Z. Krasińskiego 8, 40-019 Katowice, Poland
  • Silesian University of Technology, Faculty of Materials Engineering, ul. Z. Krasińskiego 8, 40-019 Katowice, Poland
  • Silesian University of Technology, Faculty of Materials Engineering, ul. Z. Krasińskiego 8, 40-019 Katowice, Poland
  • Silesian University of Technology, Faculty of Materials Engineering, ul. Z. Krasińskiego 8, 40-019 Katowice, Poland
  • Silesian University of Technology, Faculty of Materials Engineering, ul. Z. Krasińskiego 8, 40-019 Katowice, Poland
  • Silesian University of Technology, Faculty of Materials Engineering, ul. Z. Krasińskiego 8, 40-019 Katowice, Poland
Bibliografia
  • [1] Mather B., Concrete durability, Cement and Concrete Composites 2004, 26(1), 3-4, DOI: 10.1016/S0958-9465(02)00122-1.
  • [2] Marchand J., Samson E., Predicting the service-life of concrete structures-Limitations of simplified models, Cement and Concrete Composites 2009, 31.8, 515-521, DOI: 10.1016/j.cemconcomp.2009.01.007.
  • [3] Jamroży Z., Beton i jego technologie, Wydawnictwo Naukowe PWN, Warszawa-Kraków 2000.
  • [4] Abdul M.I., Arumairaj P.D., Geopolymer concreto-a review, International Journal of Engineering Sciences & Emerging Technologies 2012, 1(2), 118-122.
  • [5] Portland Cement Association https://www.cement.org/docs/ default-source/th-paving-pdfs/sustainability/carbon-foot-print.pdf (accessed 01.09.2022).
  • [6] Nodehi M., Epoxy, poliester and vinyl ester based polymer concrete: a review, Innovative nfrastructure Solutions (2022), 7(1), 64, DOI: 10.1007/s41062-021-00661-3.
  • [7] Barbuta M., Rujanu M., Nicuta A., Characterization of polymer concrete with different wastes additions, Procedia Technology 2016, 22, 407-412, DOI: 10.1016/j.protcy. 2016.01.069.
  • [8] Ohama Y., Handbook of Polymer-Modified Concrete and Mortars: Properties and Process Technology, William Andrew 1995.
  • [9] Kardon J.B., Polymer-modified concrete, Journal of Materials in Civil Engineering 1997, 9(2), 85-92, DOI: 10.1061/(ASCE)0899-1561(1997)9:2(85).
  • [10] Ollitrault-Fichet R., Gauthier C., Clamen G., Boch P., Microstructural aspects in a polymer-modified cement, Cement and Concrete Research 1998, 28(12), 1687-1693, DOI: 10.1016/S0008-8846(98)00153-7.
  • [11] Fowler D.W., Polymers in concrete: a vision for the 21st century, Cement and Concrete Composites 1999, 21(5-6), 449-452, DOI: 10.1016/S0958-9465(99)00032-3.
  • [12] Hop T., Betony polimerowe, Wydawnictwo Politechniki Śląskiej, Gliwice 1992.
  • [13] Figlus T., Kozioł M., Kuczyński Ł., Impact of application of selected composite materials on the weight and vibroactivity of the upper gearbox housing, Materials 2019, 12, 2517, DOI: 10.3390/ma12162517.
  • [14] Laustsen S., Hasholt M.T., Jensen O.M., Void structure of concrete with superabsorbent polymers and its relation to frost resistance of concrete, Materials and Structures 2015, 48, 357-368, DOI: 10.1617/s11527-013-0188-0.
  • [15] Bondarev B.A., Borkov P.V., Bondarev A.B., An outlook on the application of glass-reinforced plastic and polymer concrete components in bridge construction, Procedia Engineering 2016, 150, 1617-1622, DOI: 10.1016/j.proeng.2016.07.139.
  • [16] https://www.gorazdze.pl/pl/node/9722 (accessed 09.16.2022).
  • [17] Reis J.M.L., Ferreira A.J.M., Assessment of fracture properties of epoxy polymer concrete reinforced with short carbon and glass fibers, Construction and Building Materials 2004, 18(7), 523-528, DOI: 10.1016/j.conbuildmat.2004.04.010.
  • [18] Bulut H.A., Şahin R., A study on mechanical properties of polymer concrete containing electronic plastic waste, Composite Structures 2017, 178, 50-62, DOI: 10.1016/j.compstruct.2017.06.058.
  • [19] Mederski T., Gawdzik A., Recykling odpadów z szyb samochodowych i szkła budowlanego z folią PVB, Proceedings of ECOpole 2016, 10(2), 721-731, DOI: 10.2429/proc.2016.10(1)079
  • [20] Tuchinda C., Srivannaboon S., Lim H.W., Photoprotection by window glass, automobile glass, and sunglasses, Journal of the American Academy of Dermatology 2006, 54(5), 845-854, DOI: 10.1016/j.jaad.2005.11.1082.
  • [21] OICA, The International Organization of Motor Vehicle Manufacturers, 2014, Available online: https://www.oica.net/category/production-statistics/2021-statistics/ (accessed on 01.09.2022).
  • [22] Šooš Ľ., Matúš M., Pokusová M., Čačko V., Bábics J., The recycling of waste laminated glass through decomposition technologies, Recycling 2021, 6(2), 26, DOI: 10.3390/recycling6020026.
  • [23] Gorokhovski A.V., Escalante-Garcia J.I., Gashnikova G.Y., Nikulina L.P., Artemenko S.E., Composite materials based on wastes of flat glass processing, Waste Management 2005, 25, 733-736, DOI: 10.1016/j.wasman.2004.11.007.
  • [24] Andiç-Çakır Ö., Üzüm O., Yüksel C., Sarikanat M., Waste glass aggregate for cementitious and polymer concrete, Proceedings of the Institution of Civil Engineers-Construction Materials 2016, 169(2), 106-116, DOI: 10.1680/coma.15.00011.
  • [25] Saribiyik M., Piskin A., Saribiyik A., The effects of waste glass powder usage on polymer concrete properties, Construction and Building Materials 2013, 47, 840-844, DOI: 10.1016/j.conbuildmat.2013.05.023.
  • [26] Hejna A., Przybysz-Romatowska M., Kosmela P. et al., Recent advances in compatibilization strategies of wood-polymer composites by isocyanates, Wood Science and Technology 2020, 54, 5, 1091, DOI: 10.1007/s00226-020-01203-3.
  • [27] Alhazmi H., Shah S.A.R., Anwar M.K. et al., Utilization of polymer concrete composites for a circular economy: A comparative review for assessment of recycling and waste utilization, Polymers 2021, 13, 2135. DOI: 10.3390/polym13132135.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87478f1c-d647-4210-b41e-83ab2a477e36
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.