PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Validation of a new hyperviscoelastic model for deformable polymers used for joints between rc frames and masonry infills

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper, an attempt to alleviate the problem of premature damage to infills by using flexible polymers between the infill and the r.c. frame is presented. The flexibility of the polymer could serve to reduce the stress concentrations and thereby reduce damage to infills on one hand, and provide a high amount of damping and ductility on the other. Its efficiency is tested by cyclic shear tests carried out on a large-scale model. In the numerical part, the material is modelled using for the purpose developed finite element. The finite element with the new hyperviscoelastic constitutive model was coded in the AceGen/AceFEM program.
Rocznik
Strony
113--121
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
autor
  • Cracow University of Technology Institute of Structural Mechanics Warszawska 24, 31-155 Kraków, Poland
autor
  • Slovenian National Building and Civil Engineering (ZAG) Dimiceva 12, 1000 Ljubljana, Slovenia
autor
  • Democritus University of Thrace Department of Civil Engineering Vas Sofias 12, 67100 Xanthi, Greece
autor
  • D’Annunzio University of Chieti-Pescara Engineering and Geology Department Viale Pindaro 42, 65127 Pescara, Italy
autor
  • University of Ljubljana Faculty for Civil and Geodetic Engineering Jamova 2, 1000 Ljubljana, Slovenia
Bibliografia
  • 1. Kwiecień A., Highly deformable polymers for repair and strengthening of cracked masonry structures, GSTF International Journal of Engineering Technology (JET), 2(1): 182–196, 2013, doi: 10.5176/2251-3701 2.1.53.
  • 2. Falborski T., Jankowski R., Kwiecień A., Experimental study on polymer mass used to repair damaged structures, Key Engineering Materials, 488–489: 347–350, 2012, doi: 10.4028/www.scientific.net/KEM.488-489.347.
  • 3. Kisiel P., The stiffness and bearing capacity of polymer flexible joint under shear load, Procedia Engineering, 108: 496–503, 2015, doi: 10.1016/j.proeng.2015.06.111.
  • 4. Kwiecień A., Gams M., Zając B., Numerical modelling of flexible polymers as the adhesive for FRPs, FRPRCS-12 & APFIS-2015 Joint Conference, p. 154, Nanjing, China, 2015.
  • 5. Kwiecień A., Polymer flexible joints in masonry and concrete structures [in Polish], Monography, A Series of Civil Engineering, No. 414, Wydawnictwo Politechniki Krakowskiej, Kraków, 2012.
  • 6. Seth B.R., Generalized strain measure with applications to physical problems, [in:] SecondOrder Effects in Elasticity, Plasticity, and Fluid Dynamics, Reiner M., Abir D. [Eds.], pp. 162–171, Pergamon Press, Oxford, 1964.
  • 7. Baˇzant Z.P., Easy-to-compute tensors with symmetric inverse approximating Hencky finite strain and its rate, Journal of Engineering Materials and Technology, Transactions of the ASME, 120(2): 131–136, 1998, doi: 0.1115/1.2807001.
  • 8. Darijani H., Naghdabadi R., Constitutive modeling of solids at finite deformation using a second-order stress-strain relation, International Journal of Engineering Science, 48(2): 223–236, 2010, doi: 10.1016/j.ijengsci.2009.08.006.
  • 9. Jemioło S., Study of hyperelastic properties of isotropic materials. Modeling and numerical implementation. Scientific Works. Civil Engineering [in Polish], Nr 140, OWPW, Warszawa, 2002.
  • 10. Jemioło S., Constitutive relationships of hyperelasticity [in Polish], PAN, KILiW, Warszawa, 2016.
  • 11. Kwiecień A., Modeling of constitutive equations for hyperelastic polymers in flexible joints, Modern Structural Mechanics in Engineering Design Studies in the Field of Engineering, No. 92, PAN KILiW, Garstecki A., Gilewski W., Pozorski Z. [Eds.] [in Polish], pp. 153–180, Politechnika Warszawska, Warszawa, 2015.
  • 12. Korelc J., Automatic generation of finite-element code by simultaneous optimization of expressions, Theoretical Computer Science, 187(1–2): 231–248, 1997, doi: 10.1016/S0304- 3975(97)00067-4.
  • 13. AceGen 7.0 and AceFEM 7.0 user manual, http://symech.fgg.uni-lj.si/.
  • 14. Wcisło B., Pamin J., Entropic thermoelasticity for large deformations and its AceGen implementation, [in:] Łodygowski T., Rakowski J., Grabowski T. [Eds.], Recent Advances in Computational Mechanics, pp. 319–326, CRC Press Taylor & Francis Group, London, 2014.
  • 15. Wcisło B., Żebro T., Kowalczyk-Gajewska K., Pamin J., Finite strain inelastic models with gradient averaging and AceGen implementation, Proceedings of European Congress on Computational Methods in Applied Sciences and Engineering – ECCOMASS 2012, e-Book Full Papers, pp. 5673–5687, Vienna, 2012.
  • 16. Wriggers P., Nonlinear finite element methods, Springer, Berlin Heidelberg 2008.
  • 17. Nowak Z., Constitutive modeling and parameter identification for rubber-like materials, Engineering Transactions, 56(2): 117–157, 2008.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87472aa2-9023-4185-8c22-72f847d14516
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.