PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identification of pollution sources in the Narew River catchment using multivariate statistical methods

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the statistical analyses carried out was to identify similarities and to point out differences between the various tributaries of the Narew River, to identify the factors and processes responsible for the transformations occurring in the aquatic environment and finally, to identify the main sources of pollution in the river catchment. For the purposes of statistical analysis, the results of studies conducted as part of diagnostic monitoring by the General Inspectorate for Environmental Protection in 2017–2018 were used. The studies included 8 measurement points located directly on the Narew River and 17 points located on its selected left and right tributaries. Analysis of the collected results indicates that the chemical condition of the water in the Narew catchment is assessed as being poor. This observation may be due to the fact that the Narew catchment is mainly used for agricultural purposes and, in addition, there is a relatively large number of potential anthropogenic sources. As part of the analysis, two potential sources of pollution affecting water quality in the Narew catchment were identified, which include surface run-off and treated wastewater inflow.
Czasopismo
Rocznik
Strony
23--30
Opis fizyczny
Bibliog. 54 poz., rys., tab.
Twórcy
autor
  • Bialystok University of Technology, Department of Technology in Environmental Engineering, 15-351 Białystok, Wiejska 45E Str., Poland
Bibliografia
  • Ahmadmoazzam, M., Birgani, Y.T., Molla-Norouzi, M., Dastoorpour, M., 2021. Assessment of the Water Quality of Karun River Catchment Using Artificial Neural Networks-self-Organizing Maps and K-Means Algorithm. Journal of Environmental Accounting and Management 9 (1), 43–58.
  • Apostolovic, T., Trickovic, J., Isakovski. M.K., Jovic, B., Maletic, S., Tubic, A., Agbaba, J., 2020. Investigation of chlorinated phenols sorption mechanisms on different layers of the Danube alluvial sediment. Journal of Environmental Sciences 98, 134–142.
  • Araujo, G.M., Neto, I.E.L., 2018. Removal of organic matter in stormwater ponds: a plug-flow model generalisation from waste stabilisation ponds to shallow rivers. Urban Water Journal 15 (9), 918–924
  • Arias, A., Feijoo, G., Moreira, M.T., 2020. Linking organic matter removal and biogas yield in the environmental profile of innovative wastewater treatment technologies. Journal of Cleaner Production 276, article no. 124292.
  • Bakure, B.Z., Fikadu, S., Malu, A., 2020. Analysis of physicochemical water quality parameters for streams under agricultural. urban and forest land-use types: in the case of gilgel Gibe catchment, southwest Ethiopia. Applied Water Science 10 (11), article no. 234.
  • Boujelben, I., Sabri, S., van Pelt, J., ben Makhlouf, M., Gdoura, R., Khannous, L., 2020. Functional selection of bacteria in an activated sludge reactor for application in saline wastewater treatment in Kerkennah. Tunisia. International Journal of Environmental Science And Technology 18, 1561–1578.
  • Campo, R., Sguanci, S., Caffaz, S., Mazzoli, L., Ramazzotti, M., Lubello, C., Lotti, T., 2020. Efficient carbon. nitrogen and phosphorus removal from low C/N real domestic wastewater with aerobic granular sludge. Bioresource Technology 305, article no. 122961.
  • Chen, X.Y., Lu, J.J., Zhu, J., Liu, C.Q., 2020. Characteristics of denitrifying bacteria in different habitats of the Yongding River wetland. China. Journal of Environmental Management 275, article no. 111273.
  • Cockerill, K., Mohr, T., Anderson, W.P., Groothuis, P., Gu, C.H., Whitehead, J., 2019. Managing stormwater runoff in Appalachia: what does the public think? Journal of Environmental Planning and Management 62 (14), 2418–2436.
  • Cui, M., Guo, Q., Wei, R., Tian, L., 2021. Human-driven spatiotemporaldistribution of phosphorus flux in the environment of a mega river basin. The Science of the Total Environment 752, article no. 141781.
  • Dzierzbicka-Glowacka, L., Pietrzak, S., Dybowski, D., Bialoskorske, M., Marcinkowski, T., Rossa, L., Urbaniak, M., Majewska, Z., Juszkowska, D., Nawalany, P., Pazikowska-Sapota, G., Kamińska, B., Selke, B., Korthals, P., Puszkarczuk, T., 2019. Impact of agricultural farms on the environment of the Puck Commune: Integrated agriculture calculator-CalcGosPuck. PEERJ 7, article no. e6478.
  • Farid, I.M., Abbas, M.H.H., Bassouny, M.A., Gameel, A., Abbas, H.H., 2020. Indirect Impacts of Irrigation with Low Quality Water on The Environmental Safety. Egyptian Journal of Soil Science 60 (1), 1–15.
  • Haymale, H.K., Njau, K.N., Kahimba, F.C., 2020. Estimating Conveyance Efficiency and Maize Productivity of Traditional Irrigation Systems in USA River Catchment. Tanzania. International Journal of Agronomy, article no. 7065238.
  • Kang, S., Kim, J.H., Hwang, J.H., Bong, Y.S., Ryu, J.S., Shin, K.H., 2020. Seasonal contrast of particulate organic carbon (POC) characteristics in the Geum and Seomjin estuary systems (South Korea) revealed by carbon isotope (delta C-13 and Delta C-14) analyses. Water Research 187, article no. 116442.
  • Kaur, J., Kaur, V., Pakade, Y.B., Katnoria, J.K., 2020. A study on water quality monitoring of Buddha Nullah. Ludhiana. Punjab (India). Environmental Geochemistry and Health 43, 2699–2722.
  • Krevs, A., Kucinskiene, A., Manusadzianas, L., 2019. Long-term changes of water physicochemical conditions and benthic microbial processes in a small lake associated with land use in the catchment. Knowledge and Management of Aquatic Ecosystems 420, article no. 47.
  • Lee, K.H., Wang, Y.F., Wang, Y., Gu, J.D., Jiao, J.J., 2018. Abundance and Diversity of Aerobic/Anaerobic Ammonia/Ammonium-Oxidizing Microorganisms in an Ammonium-Rich Aquitard in the Pearl River Delta of South China. Microbial Ecology 76 (1), 81–91.
  • Leroy, M.C., Portet-Koltalo, F., Legras, M., Lederf, F., Moncond'huy, V., Polaert, I., Marcotte, S., 2016. Performance of vegetated swales for improving road runoff quality in a moderate traffic urban area. Science of the Total Environment 566, 113–121.
  • Letshwenyo, M.W., Thumule, S., Elias, K., 2020. Evaluation of waste stabilisation pond units for treating domestic wastewater. Water and Environment Journal 35(4), https://doi.org/10.1111/wej.12641
  • Ma, X.X., Wang, L., Yang, H., Li, N., Gong, C., 2020. Spatiotemporal Analysis of Water Quality Using Multivariate Statistical Techniques and the Water Quality Identification Index for the Qinhuai River Basin. East China. Water 12 (10), article no. 2764.
  • Marques, E.A.G., Silva, G.C., Eger, G.Z.S., Ilambwetsi, A.M., Raphael, P., Generoso, T.N., Oliveira, J., Junior, J.N., 2020. Analysis of groundwater and river stage fluctuations and their relationship with water use and climate variation effects on Alto Grande watershed. Northeastern Brazil. Journal of South American Earth Sciences 103, article no. 102723.
  • Mohtadi, M., James, B.R., Davis, A.P., 2020. Activated carbon column adsorption of compounds that mimic urban stormwater dissolved organic nitrogen. Water Environment Research, https://doi.org/10.1002/wer.1396
  • Nasiłowska, S., 2008. Land use changes in the basin of upper Narew river. in XIX–XX century. Teledetekcja Środowiska 40, 53–68 (in Polish with English summary).
  • Nguyen, T.K.L., Ngo, H.H., Guo, W.S., Chang, S.W., Nguyen, D.D., Nguyen, T.V., Nghiem, D.L., 2020. Contribution of the construction phase to environmental impacts of the wastewater treatment plant. Science of the Total Environment 743, article no. 140658.
  • Nhut, H.T., Hung, N.T.Q., Sac, T.C., Bang, N.H.K., Tri, T.Q., Hiep, N.T., Ky, N.M., 2020. Removal of nutrients and organic pollutants from domestic wastewater treatment by sponge-based moving bed biofilm reactor. Environmental Engineering Research 25 (5), 652–658.
  • Payandi-Rolland, D., Shirokova, L.S., Tesfa, M., Benezeth, P., Lim, A.G., Kuzmina, D., Karlsson, J., Giesler, R., Pokrovsky, O.S., 2020. Dissolved organic matter biodegradation along a hydrological continuum in permafrost peatlands. Science of The Total Environment 749, article no. 141463.
  • Petrovski, S., Rice, D.T.F., Batinovic, S., Nittami, T., Seviour, R.J., 2020. The community compositions of three nitrogen removal wastewater treatment plants of different configurations in Victoria. Australia. over a 12-month operational period. Applied Microbiology and Biotechnology 104 (22), 9839–9852.
  • Pu, T., Kong, Y., Kang, S., Shi, X., Zhang, G., Wang. S., Cao, B., Wang, K., Hua, H., Chen, P., 2021. New insights into trace elements in the water cycle of a karst-dominated glacierized region. southeast Tibetan Plateau. The Science of the Total Environment 751, article no. 141725.
  • Rahman, M.Y.A., Nachabe, M.H., Ergas, S.J., 2020. Biochar amendment of stormwater bioretention systems for nitrogen and Escherichia coli removal: Effect of hydraulic loading rates and antecedent dry periods. Bioresource Technology 310, article no. 123428.
  • Siegwald, L., de Jong, C., 2020. Anthropogenic Impacts on Water Quality in a Small. Forested Mountain Catchment: A Case Study of the Seebachle. Black Forest. Southern Germany. Sustainability 12 (21), article no. 9022.
  • Skorbiłowicz, E., 2006. Azot w osadach dennych wybranych rzek zlewni Górnej Narwi. Zeszyty Problemowe Postępów Nauk Rolniczych 513, 381–388 (in Polish with English summary).
  • Skorbiłowicz, E., Skorbiłowicz, M., 2009. Trace elements in a valley of upper river Narew and its selected tributaries. NE Poland. Environmental Protection Engineering 35 (3), 259–278.
  • Skorbiłowicz, M., 2003. Pollution of streams of river-basin Narew on section Suraż-Tykocin. Acta Agrophysica 1 (3), 529–538 (in Polish with English summary).
  • Skorbiłowicz, M., 2013. The sources of nutrines in waters of rivers in the wetlands areas of Narew National Park in north-eastern Poland. Journal of Ecological Engineering 14 (3), 1–7.
  • Skorbiłowicz, M., 2016. Recognition of main processes forming chemical composition of the Suprasl river water. Journal of Ecological Engineering 17 (1), 154–160.
  • Skorbiłowicz, M., Skorbiłowicz, E., Tarasiuk, U., Falkowska, M., 2017. Studies of heavy metal content in bottom sediments and aquatic plants near treated wastewater discharge. Geology. Geophysics & Environment 43 (4), 311–325.
  • Souza, M.D., Langaro, A.C., Passos, A.B.R.D., Lins, H.A., Silva, T.S., Mendonca, V., da Silva, A.A., Silva, D.V., 2020. Adsorption mechanisms of atrazine isolated and mixed with glyphosate formulations in soil. PLOS ONE 15 (11), article no. e0242350.
  • Szatten, D., Habel, M., 2020. Effects of Land Cover Changes on Sediment and Nutrient Balance in the Catchment with Cascade-Dammed Waters. Remote Sensing 12 (20), article no. 3414.
  • Tao, P., Jin, M., Yu, X., Yu, J., Zheng, R., 2021. Spatiotemporal variations in chromophoric dissolved organic matter (CDOM) in a mixed land-use river: Implications for surface water restoration. Journal of Environmental Management 277, article no. 111498.
  • Trajkovic, S., Milicevic, D., Milanovic, M., Gocic, M., 2020. Comparative study of different LID technologies for drainage and protection of atmospheric stormwater quality in urban areas. Arabian Journal Of Geosciences 13 (20), article no. 1101.
  • Varekar, V., Yadav, V., Karmakar, S., 2021. Rationalization of water quality monitoring locations under spatiotemporal heterogeneity of diffuse pollution using seasonal export coefficient. Journal of Environmental Management 277, article no. 111342.
  • Wang, M., Sha, C.Y., Wu, J., Su, J.H., Wu, J.Q., Wang, Q., Tan, J., Huang, S.F., 2021. Bacterial community response to petroleum contamination in brackish tidal marsh sediments in the Yangtze River Estuary. China. Journal of Environmental Sciences 99, 160–167.
  • Wang, S.M., Zhang, B., Sima, W.P., Li, J.K., Tan, J.C., 2020. A field study of lined bioretention systems in removing nutrients from stormwater runoff. Desalination and Water Treatment 200, 109–118.
  • We, A.C.E., Aris, A., Zain, N.A.M., 2020. A review of the treatment of low-medium strength domestic wastewater using aerobic granulation technology. Environmental Science-Water Research & Technology 6 (3), 464–490.
  • Wu, J.H., Jin, Y.N., Hao, Y., Lu, J., 2020. Identification of the control factors affecting water quality variation at multi-spatial scales in a headwater watershed. Environmental Science and Pollution Research (Early Access).
  • Wu, W., Ren, J.C., Zhou, X.D., Wang, J.W., Guo, M.J., 2020a. Identification of source information for sudden water pollution incidents in rivers and lakes based on variable-fidelity surrogate-DREAM optimization. Environmental Modelling & Software 133, article no. 104811.
  • Xiaohui, P., Xiaomei, Z., Chongguo, T., Jianhui, T., 2021. Distributions. transports and fates of short- and medium-chain chlorinated paraffins in a typical river-estuary system. The Science of the Total Environment 751, article no. 141769.
  • Yan, A.L., Liu, C.X., Liu, Y.Y., Xu, F., 2018. Effect of ion exchange on the rate of aerobic microbial oxidation of ammonium in hyporheic zone sediments. Environmental Science and Pollution Research 25 (9), 8880–8887.
  • Yin, A.J., Duan, J.J., Xue, L.H., Feng, Y.F., Petropoulos, E., Yang, L.Z., 2020. High yield and mitigation of N-loss from paddy fields obtained by irrigation using optimized application of sewage tail water. Agriculture Ecosystems & Environment 304, article no. 107137.
  • Yuan, X.Y., Wang, Y.M., Tang, L., Zhou, H.H., Han, N., Zhu, H., Uchimiya, M., 2020. Spatial distribution. source analysis. and ecological risk assessment of PBDEs in river sediment around Taihu Lake. China. Environmental Monitoring and Assessment 192 (5), article no. 309.
  • Yuan, Y.J., Liang, D., 2021. Optimization of Identifying Point Pollution Sources for the Convection-Diffusion-Reaction Equations. Advances in Applied Mathematics and Mechanics 13 (1), 1–17.
  • Zeunert, S., Meon, G., 2020. Influence of the spatial and temporal monitoring design on the identification of an instantaneous pollutant release in a river. Advances In Water Resources 146, article no. 103788.
  • Zhang, Q., Jia, S.G., Yang, L.M., Krishnan, P., Zhou, S.Z., Shao, M., Wang, X.M., 2021. New particle formation (NPF) events in China urban clusters given by sever composite pollution background. Chemosphere 262, article no. 127842.
  • Zhang, R., Kang, Y., Zhang, R., Han, M., Zeng, W., Wang. Y., Yu, K., Yang, Y., 2021a. Occurrence. source. and the fate of antibiotics in mariculture ponds near the Maowei Sea. South China: Storm caused the increase of antibiotics usage. The Science of the Total Environment 752, article no. 141882.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8745331f-a906-4578-850f-d09a9fc27094
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.