PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the Virginia Fanpetals Cultivation Method on Calorific Value, Content and Dynamics of Macronutrient Uptake

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A one-factor field experiment was carried out in 2016–2019 at the Experimental Station in Lipnik near Stargard. The aim of the study was the cultivation of Virginia fanpetals in two systems of sowing and planting, determining the impact of the cultivation system on the yield quantity, calorific value, moisture, content and dynamics of the macronutrient uptake by Virginia fanpetals, calculation of the relationship between the yield and NPK intake, calorific value and yield as well as the analytical moisture content. Studies have shown that the method of establishing the plantation (sowing, planting) did not have any significant impact on the calorific value of Sida. A statistical analysis indicated that the method of establishing the plantation (sowing, planting) did not have a significant impact on the formation of the nitrogen, phosphorus and potassium contents in the biomass, while it was significant for magnesium and sulfur. More macroelements was contained in the Virginia fanpetals biomass from sowing compared to planting. The total uptake of macronutrients by the Virginia fanpetals biomass was higher in the planting cultivation system. In the system of planting cultivation, in the first year of plantation operation, higher dynamics of the N, P, K, Mg and S uptake by the Virginia fanpetals biomass compared to the sowing system was found. A correlation analysis showed very high degree of correlation between the size of Virginia fanpetals biomass yield as well as the nitrogen and phosphorus uptake.
Rocznik
Strony
120--128
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • West Pomeranian University of Technology in Szczecin, Departament of Environmetal Chemistry, ul. Słowackiego 17, 71-434 Szczecin, Poland
autor
  • West Pomeranian University of Technology in Szczecin, Department of Agricultural Engineering, ul. Słowackiego 17, 71-434 Szczecin, Poland
  • West Pomeranian University of Technology in Szczecin, Department of Agricultural Engineering, ul. Słowackiego 17, 71-434 Szczecin, Poland
autor
  • West Pomeranian University of Technology in Szczecin, Department of Bioengineering, ul. Słowackiego 17, 71-434 Szczecin, Poland
  • West Pomeranian University of Technology in Szczecin, Departament of Environmetal Chemistry, ul. Słowackiego 17, 71-434 Szczecin, Poland
Bibliografia
  • 1. Anderson E., Arundale R., Oladeinde A., Wycisło A. Voigt T. 2011. Growth and agronomy of Miscanthus x giganteus for biomass production. Biofuels, 2, 71–87.
  • 2. Artyszak D. 2016. Energy crops – characteristics of basic species and their use in the Polish energy sector. Proceedings „Nowoczesna Energetyka Europy Środkowo-Wschodniej”, Warszawa, 1–34.
  • 3. Bielińska. J., Futa B., Mocek A., 2008. Impact of agrotechnical operations on the functioning of the agricultural landscape. Inżynieria Rolnicza, 10(108), 7–15.
  • 4. Biernat K. 2012. Prospects for the development of biofuel technologies in the world by 2050. Chemik, 66(11), 1178–1189.
  • 5. Bocqueho G., Jacquet F. 2010. The adopition of switchgrass and miscanthus by farmers: Impact of liquidity constraints and risk preferences. Energy Policy, 38, 2598–2607.
  • 6. Borkowska H., Lipiński W. 2008. Comparison of the content of selected elements in the biomass of Pennsylvanian mallow cultivated in soil conditions Acta Agroph. 11(3), 589–595.
  • 7. Borkowska H., Molas R., Kupczyk A. 2009. Virginia Fanpetals (Sida hermaphrodita Rusby) Cultivated on Light Soil; Height of Yield and Biomass Productivity. Polish J. Environ. Stud., 18, 563–568.
  • 8. Borkowska H., Molas R., Skiba D., Machaj D. 2016. Yielding and energy value of Pennsylvanian mallow depending on the level of nitrogen fertilization. Acta Agroph. 23(1), 5–14.
  • 9. Bury M., Kitczak T., Możdżer E., Siwek H., Włodarczyk M., 2019. Cultivation of Sida (Pennsylvanian mallow). Production results, agrotechnics and utilization. Wyd. ZUT, 30–60.
  • 10. Cosentino S., Scordia D., Testa G., Monti A., Alexopoulou E., Christou M. 2018. The Importance of Perennial Grasses as a Feedstock for Bioenergy and Bioproducts. Perenial Grasses for Bioenergy and Bioproducts, Elsevier: The Netherlands, 1–33.
  • 11. Gaj R. 2010. Effect of different level of potassium fertilization on Winter oilseed rape nutritional status AT the initation of the main stem growth and on the field. Oilseed Crops XXXI, 115–124.
  • 12. Gajewski R. 2016. Potential role of energy plantations in Poland. Polish Chamber of Biomass. Polska Izba Biomasy, Warszawa. http://www.econet-poland.pl/fileadmin/ahk_poleneconet/Publicationen/Polska.
  • 13. Gibczyńska M., Stankowski S., Hury G., Sobolewska M., 2019. Analysis of the content of macroelements in soil and seeds of winter rape (Brassica Napus Var. Napus) as a result of fertilization using two-component mineral fertilizers. Journal of Ecological Engineering, 20(4), 61–68. DOI: 10.12911/22998993/102703
  • 14. Iqbal Y., Lewandowski I. 2014. Biomass composition and ash melting behaviour of selected miscanthus genotypes in south Germany. FuelProcess. Technol., 121, 47–55.
  • 15. Iżewska A., 2009. Suitability of municipal sewage sludge composts for fertilizing sugar Miscanthus (Miscanthus sacchariflorus Maxim.). Wyd. Zachodniopomorskiego Uniwersytetu Technologicznego w Szczecinie. Monografia, 1–24.
  • 16. Jagustyn B., Bątorek-Giesa N., Wilk B. 2011. Assessment of biomass properties used for energy purposes. Chemik, 65, 6, 557–563.
  • 17. Janowicz L. 2006. Biomass in Poland. Energetyka, 8: 601–604.
  • 18. Kocoń A. 2005. Fertilization of spring and winter wheat, yield and quality of grain. Pam. Puł. 139, 57–64.
  • 19. Kowalczyk-Juśko A. 2017.The Influence of the Ash from the Biomass on the Power Boiler Pollution. Journal of Ecological Engineering, 18(6), 200–204. DOI: 10.12911/22998993/76897
  • 20. Kacprzak A., Michalska K., Romanowska-Duda Z., Grzesik M. 2012. Energy crops as a valuable raw material for biogas production. Kosmos. Prob. Nauk Biol., 2(61), 281–293.
  • 21. Kalembasa S., Wiśniewska B. 2006. The influence of nitrogen doses on the biomass yield of Sida (Sida hermaphrodita Rusby) and its content of macroelements. Acta Agroph., 8(1), 127–138.
  • 22. Kisiel A., Lewandowski I. 2017. Miscanthus as biogas substratecutting tolerance and potential for anaerobic digestion. GCB Bioenerg. 9, 153–167.
  • 23. Kowalczyk-Juśko A. 2009. Ash from various energy crops. Proceedings of ECOpole, 3(1), 159–164.
  • 24. Kuś J., Matyka M. 2010. Selected elements of agrotechnics of plants grown for energy purposes. [In:] Bocian P., Golec T, Rakowski J. (Eds.). Modern technologies for obtaining and energetic use of biomass.. Wyd. IE Warszawa, 101–120.
  • 25. Lewandowski I., Clinton-Brown J., Trindade L.M., Linden V.D., Schwarz K.U., Muller-Samann K., Anisimov A., Chen C.-L., Dolstra O., Dommison I.S. 2016. Programs on Optimizing Biomass Production for the European Bioeconomy. Results of the EU FP7 Project OPTIMISC. Front. Plant Sci., 7, 1620.
  • 26. Łabętowicz J., Stępień W. 2010. Fertilization of energy crops (willow, miscanthus, mallow). Modern technologies for obtaining and energetic use of biomass.. Instytut Energetyki, 89–100.
  • 27. Mółka J., Łapczyńska-Kordon B. 2011. Energy properties of selected biomass species. Inż. Rol., 6 (131), 141–146.
  • 28. Sapek A., Sapek B. 2012. The importance of biofuels in obtaining energy is renewed.. Woda-Środowisko-Obszary Wiejskie, 12 (37), 139–151.
  • 29. Stanisławska-Glubiak E., Korzeniowska J. 2007. Assessment of plant nutritional status. . Oddział Krakowski Polskiego Towarzystwa Inżynierii Ekologicznej, Stacja ChemicznoRolnicza, 5–21.
  • 30. Styrczula P., Możdżer E. 2013. Effect of multicompnent mineral fertilizers and organic fertilization on the NPK content and uptake by perennial rye-grass biomass Chemik 67(7), 604–615.
  • 31. Regulation of the Minister of Environment (in Poland). Official Journal of low item. 1395 of 2016.
  • 32. Van Valthuizen, H. 2003. Agroecological zoning of Europe. http://agrienv.irc.it/activities/pd.fs/irena/Velthuizen-AEZ-Europe.pdf.
  • 33. Wach E. 2007. Renewable energy sources until 2020 years. Czysta Energia, 4, 1–40.
  • 34. Weiland P. 2010. Biogas production:current state and prespectives. Appl. Microbiol. Biotechnol., 85, 849–860.
  • 35. Wiesenthal T. 2006. How mich bioenergy can Euro produce without harming enriroment. EEA Raport, 7–67.
  • 36. Witzel C.-P., Finger R. 2016. Economic evaluation of Miscanthus production – A review. Renew/Sustain. Energy Rev., 56, 681–696.
  • 37. Wysokiński A., Kalembasa S., 2006. Selected physicochemical properties of fresh and composting of sewage sludge and their mixtures with CaO or brown coal ash.. Acta Sci. Pol., Formatio Circumiectus, 1, 51–61.
  • 38. Zub H.W., Brancourt-Hulmel M. 2010. Agronomic and physiological performances of different species of Miscanthus, a major Energy crop. Agron. Sustain. Dev. 30, 201–214.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8744a66b-99f5-47fc-9c03-28d6db9933d5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.