PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Residual Stresses of AlSi10Mg Fabricated by Selective Laser Melting (SLM)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the paper is the residual stress analysis of AlSi10Mg material fabricated by selective laser melting (SLM). The SLM technique allows to product of complex geometries based on three-dimensional model, in which stiffness and porosity can be precisely designed for specific uses. As the studied material, there were chosen solid samples built in two different directions: parallel (P-L) and perpendicular (P-R) to the tested surface and cellular lattice built in perpendicular direction, as well. In the paper, for the complex characterization of obtained materials, the phase analysis, residual stress and texture studies were performed. The classical non-destructive sin2ψ method was used to measure the residual stress measurements. The final products, both solid sample and cellular lattice, have a homogeneous phase composition and consist of solid solution Al(Si) (Fm-3m) type, Si (Fd-3m) and Mg2 Si (Pnma). The obtained values of the crystallite size are in a range of 1000 Å for Al(Si), 130-180 Å for Si phase. For Mg2 Si phase, the crystallite sizes depend on sintering process, they are 800 Å for solid samples and 107 Å for cellular lattice. The residual stress results have the compressive character and they are in a range from –5 to –15 MPa.
Twórcy
autor
  • University of Silesia, Institute of Materials Science, 1A 75 Pułku Piechoty Str., 41-500 Chorzów, Poland
  • University of Silesia, Institute of Materials Science, 1A 75 Pułku Piechoty Str., 41-500 Chorzów, Poland
autor
  • Institute of Advanced Manufacturing Technology, 37A Wrocławska Str., 30-011 Kraków, Poland
autor
  • Institute of Advanced Manufacturing Technology, 37A Wrocławska Str., 30-011 Kraków, Poland
Bibliografia
  • [1] T. Wohlers, T. Caffrey, Wohler’s report 2018 - 3D Printing and Additive Manufacturing State of the Industry, Annual Worldwide Progress Report (2018).
  • [2] S. Bremen, W. Meiners, A. Diatlov, Laser Tech. J. (2012), DOI: 10.1002/latj.201290018.
  • [3] J. Banhart, Int. J. Veh. Des. (2005), DOI: 10.1504/ijvd.2005.006640.
  • [4] E. O. Olakanmi, R. F. Cochrane, K. W. Dalgarno, Prog. Mater. Sci. (2015), DOI: 10.1016/j.pmatsci.2015.03.002.
  • [5] J. Pakkanen, F. Calignano, F. Trevisan, M. Lorusso, E. P. Ambrosio, D. Manfredi, P. Fino, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. (2016), DOI: 10.1007/s11661-016-3478-7.
  • [6] A. Armillotta, R. Baraggi, S. Fasoli, Int. J. Adv. Manuf. Technol. (2014), DOI: 10.1007/s00170-013-5523-7.
  • [7] R. P. Bajpai, U. Chandrasekhar, A. Arankalle, in: Int. Conf. Innov. Des. Anal. Dev. Pract. Aerosp. Automot. Eng. (IDAD 2014) DOI: 10.1007/978-81-322-1871-5.
  • [8] M. Tisza, I. Czinege, Int. J. Light. Mater. Manuf. (2018), DOI: 10.1016/j.ijlmm.2018.09.001.
  • [9] C. Yan, L. Hao, A. Hussein, S.L. Bubb, P. Young, D. Raymont, J. Mater. Process. Technol. (2014), DOI: 10.1016/j.jmatpro-tec.2013.12.004.
  • [10] X. Han, H. Zhu, X. Nie, G. Wang, X. Zeng, Materials (Basel) (2018), DOI: 10.3390/ma11030392.
  • [11] K. Kempen, L. Thijs, J. Van Humbeeck, J. P. Kruth, in: Phys. Procedia (2012), DOI: 10.1016/j.phpro.2012.10.059.
  • [12] C. A. Biffi, J. Fiocchi, P. Bassani, D. S. Paolino, A. Tridello, G. Chiandussi, M. Rossetto, A. Tuissi, Procedia Struct. Integr. (2017), DOI: 10.1016/J.PROSTR.2017.11.060.
  • [13] K. Bartkowiak, S. Ullrich, T. Frick, M. Schmidt, in: Phys. Procedia (2011), DOI: 10.1016/j.phpro.2011.03.050.
  • [14] D. Buchbinder, H. Schleifenbaum, S. Heidrich, W. Meiners, J. Bül-tmann, in: Phys. Procedia (2011), DOI: 10.1016/j.phpro.2011. 03.035.
  • [15] Y. Liu, C. Liu, W. Liu, Y. Ma, S. Tang, C. Liang, Q. Cai, C. Zhang, Opt. Laser Technol. (2019), DOI: 10.1016/j.optlastec.2018.10.030.
  • [16] K. Kempen, L. Thijs, E. Yasa, M. Badrossamay, W. Verheecke, J. P. Kruth, in: Proc. 22nd Solid Free. Fabr. Symp. (2011).
  • [17] B.A.I. Shigang, N. Perevoshchikova, Y. Sha, X. Wu, Applied Sciences. (2019), DOI: 10.3390/app9030583.
  • [18] A. H. Maamoun, Y. F. Xue, M. A. Elbestawi, S. C. Veldhuis, Materials (Basel) (2018), doi:10.3390/ma11122343.
  • [19] F. Trevisan, F. Calignano, M. Lorusso, J. Pakkanen, A. Aversa, E. P. Ambrosio, M. Lombardi, P. Fino, D. Manfredi, Materials (Basel) (2017), DOI: 10.3390/ma10010076.
  • [20] N. T. Aboulkhair, N. M. Everitt, I. Ashcroft, C. Tuck, Addit. Manuf. (2014), DOI: 10.1016/j.addma.2014.08.001.
  • [21] M. Krishnan, E. Atzeni, R. Canali, F. Calignano, D. E. Manfredi, P. Ambrosio, L. Iuliano, Rapid Prototyp. J. (2014), DOI: 10.1108/RPJ-03-2013-0028.
  • [22] Z. Chen, Z. Wei, P. Wei, S. Chen, B. Lu, J. Du, J. Li, S. Zhang, J. Mater. Eng. Perform. (2017), DOI: 10.1007/s11665-017-3044-5.
  • [23] C. López, A. Elías-Zúñiga, I. Jiménez, O. Martínez-Romero, H. R. Siller, J. M. Diabb, Materials (Basel) (2018), DOI: 10.3390/ma11122542.
  • [24] J. Wu, L. Wang, X. An, Optik (Stuttg) (2017), DOI: 10.1016/j.ijleo.2017.02.060.
  • [25] L. Wang, X. Jiang, Y. Zhu, Z. Ding, X. Zhu, J. Sun, B. Yan, Adv. Mater. Sci. Eng. (2018), DOI: 10.1155/2018/7814039.
  • [26] A. Salmi, E. Atzeni, Virtual Phys. Prototyp. (2017), DOI: 10.1080/17452759.2017.1310439.
  • [27] B. Vrancken, R. Wauthle, J. Kruth, J. Van Humbeeck, Proc. 24th Int. Solid Free. Fabr. Symp. (2013), DOI: 10.1016/j.neuropsycho-logia.2011.03.040.
  • [28] A. Salmi, E. Atzeni, L. Iuliano, M. Galati, In Proceedings of the Procedia CIRP (2017), DOI: 10.1016/j.procir.2016.06.030.
  • [29] L. Wang, X. Jiang, Y. Zhu, Z. Ding, X. Zhu, J. Sun, B. Yan, Adv. Mater. Sci. Eng. (2018), DOI: 10.1007/s00170-018-2207-3.
  • [30] R. Young, The Rietveld Method. Int. Union Crystallogr. B. Ser. 1993.
  • [31] L. B. Mc Cusker, R. B. Von Dreele, D. E. Cox, D. Louër, P. Scardi, J. Appl. Cryst. 32, 36-50 (1999), DOI: 10.1107/S0021889898009856.
  • [32] G. K. Williamson, W. H. Hall, Acta Metall. (1953), DOI: 10.1016/0001-6160(53)90006-6.
  • [33] M. Karolus, E. Łągiewka, J. Alloys Compd. 367, 235-238 (2004), DOI: 10.1016/j.jallcom.2003.08.044.
  • [34] N. W. Gregory, Elements of X-Ray Diffraction. J. Am. Chem. Soc. (1957), DOI: 10.1021/ja01564a077.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8743a446-d066-425a-bfb4-44526f34b1c8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.