Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the existing possibilities of disrupting the operation of optical/optoelectronic telecommunication networks in a physical layer, distinguishing between passive and active attacks. The latter relay on jamming the operation of the optical network, ranging from the deterioration of the quality of service to the complete prevention of transmission. Passive attacks, on the other hand, are aimed at eavesdropping on transmissions. The paper discusses the various types of attacks, which are specific to the physical layer of optical networks, as well as capabilities of detection and prevention them based on the machine learning approach among others. Finally, a realistic scenario of an active attack by using of a clip-on coupler has been examined in the context of a local area optical network. The results confirm a very disruptive impact on the transmission quality if the power of the jamming signal is comparable with the power of useful signal.
Rocznik
Tom
Strony
969--977
Opis fizyczny
Bibliogr. 37 poz., fot., rys.
Twórcy
autor
- Warsaw Univeristy of Technology
autor
- Warsaw University of Technology
autor
- Warsaw University of Technology
Bibliografia
- [1] Spurny, V.; Munster, P.; Tomasov, A.; Horvath, T.; Skaljo, E. Physical Layer Components Security Risks in Optical Fiber Infrastructures, Sensors 2022, Volume 22, pp.1-15, Available: https://doi.org/10.3390/s22020588.
- [2] Furdek, M.; Chan, V.W.S.; Natalino, C.; Wosinska, L. Network-Wide Localization of Optical-Layer Attacks, Optical Network Design and Modeling, ONDM 2019, Springer 2020, Volume 11616, Available: https://doi.org/10.1007/978-3-030-38085-4.
- [3] Horvath, T.; Malina, L.; Munster, P. On Security in Gigabit Passive Optical Networks, In Proceedings of the 2015 Interna-tional Workshop on Fiber Optics in Access Network (FOAN), 2015, https://doi.org/10.1109/FOAN.2015.7320479.
- [4] Horvath, T.; Munster, P.; Oujezsky, V.; Vojtech, J.; Holik, M.; Dejdar, P.; Latal, M. GPON Network with Simulated Rogue ONU, In Proceedings of the 2019 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), 2019, Available: https://doi.org/10.23919/SOFTCOM.2019.8903811.
- [5] Atan, F.M.; Zulkifli, N.; Idrus, S. M.; Zin, N.A.M.; Ismail, N. A.; TCP Capacity Utilization In Next Generation Passive Optical Network During Degradation Attack, In Proceedings of the 2022 IEEE 6th International Symposium on Telecommunication Technologies (ISTT), 2022, Available: https://doi.org/10.1109/ISTT56288.2022.9966544.
- [6] Uematsu, T.; Hirota, H.; Kawano, T.; Kiyokura, T.; Manabe, T. Design of a Temporary Optical Coupler Using Fiber Bending for Traffic Monitoring, IEEE Photonics Journal., Volume 9, 2017, Available: https://doi.org/10.1109/JPHOT.2017.2762662.
- [7] irota, H; et al. Optical Cable Changeover Tool with Light Injection and Detection Technology, J. of Lightwave Technology, 2016, Vol-ume 34(14), pp. 3379-3388, Available: https://doi.org/10.1109/JLT.2016.2568221.
- [8] Uematsu, T.; Hirota, H.; Kawano, T.; Iida, H.; Noto, K.; Katayama, K. Temperature-Independent Temporary Optical Coupler Using Fiber Bending Technique, J. of Lightwave Technology, 2023, Volume 41(9), pp. 2834-2839, Available: https://doi.org/10.1109/JLT.2023.3237372.
- [9] Kingfisher International, OPT130, Optical Clip-on Coupler, king-fisher.com.au
- [10] o4Fiber Ltd., PFC 1000, Passive Fiber Clip-on Coupler, www.go4fiber.com
- [11] Iqbal, M.Z.; Fathallah, H.; Belhadj, N. Optical Fiber Tapping: Methods and Precautions, In Proceedings of the 8th Interna-tional Conference on High-capacity Optical Networks and Emerging Technologies, 19-21 December 2011, Riyadh, pp. 164-168, 2011, Available: https://doi.org/10.1109/HONET.2011.6149809.
- [12] Malina, L.; Horvath,T.; Munster, P.; Hajny, J. Security solution with signal propagation measurement for Gigabit Passive Optical Networks, Optik, 2016, Volume 127(16), pp. 6715-6725, Available: https://doi.org/10.1016/j.ijleo.2016.04.069.
- [13] Spurny, V.; Munster, P.; Horvath, T.; Skaljo, E. Leakage of Information Through Passive Components in Optical Fiber In-frastructures, In Pro-ceedings of the 13th International Congress on Ultra-Modern Telecom-munications and Control Systems and Workshops (ICUMT), Brno, Czech Republic, 2021, Available: https://doi.org/10.1109/ICUMT54235.2021.9631702.
- [14] Fok, M.P.; Wang, Z.; Deng, Y.; Prucnal, P.R. Optical Layer Security in Fiber-Optic Networks, IEEE Trans. on Information Forensics and Security, 2011, Volume 6(3), pp. 725-736, Available: https://doi.org/10.1109/TIFS.2011.2141990.
- [15] Yuan, S.; Steward, D. Protection of Optical Networks against Interchan-nel Eavesdropping and Jamming Attacks, In Pro-ceedings of the 2014 International Conference on Computational Science and Computational Intelligence, 2014, pp. 34-38, Available: https://doi.org/10.1109/CSCI.2014.14.
- [16] Krishnan, S.; Borude, A. Security issues in all-optical networks, In Proceedings of the 2011 Annual SRII Global Conference, 2011, pp. 790-794, Available: https://doi.org/10.1109/SRII.2011.108.
- [17] Fujiwara, M.; Miki, S.; Yamashita, T.; Wang, Z.; Sasaki, M. Photon level cross-talk between parallel fibers installed in urban area, Optics Express, 2010, Volume 18(21), pp. 22199-22207, Available: https://doi.org/10.1364/OE.18.022199.
- [18] Rejeb, R.; Leeson, M.S.; Green, R.J. Fault and Attack Management in All-Optical Networks, IEEE Communications Magazine, 2006, pp. 79-86, Available: https://doi.org/10.1109/MCOM.2006.248169.
- [19] Medard, M.; Marquis, D.; Barry, R.A.; Finn, S.G. Security Issues in All-Optical Networks, IEEE Network, 1997, pp. 42-48, Available: https://doi.org/10.1109/65.587049.
- [20] Dahan, D.; Mahlab, U. Security threats and protection procedures for optical networks, IET Optoelectronics, 2017, Volume 11(5), pp. 186-200, Available: https://doi.org/10.1049/iet-opt.2016.0150.
- [21] Wu, T.; Somani, A.K. Cross-Talk Attack Monitoring and Localization in All-Optical Networks, IEEE/ACM Trans. on Net-working, 2005, Volume 13(6), pp. 1390-1401, Available: https://doi.org/10.1109/TNET.2005.860103.
- [22] Peng, Y.; Sun, Z.; Du, S.; Long, K. Propagation of all-optical cross-talk attack in transparent optical networks, Optical Engineering, 2011, Vol-ume 5(8), pp. 085002-1-4, Available: https://doi.org/10.1117/1.3607412.
- [23] Deng, T.; Suresh, S. Analysis of optical amplifier gain competition attack in a point-to-point WDM Link, In Proceedings of SPIE, 2002, Volume 4874, pp. 249-261, Available: https://doi.org/10.1117/12.475302.
- [24] Skorin-Kapov, N.; Furdek, M.; Zsigmond, S.; Wosinska, L. Physi-cal Layer Security in Evolving Optical Networks, IEEE Communica-tions Magazine, 2016, pp. 110-117, Available: https://doi.org/10.1109/MCOM.2016.7537185.
- [25] Manousakis, K.; Ellinas, G. Attack-aware planning of transparent optical networks, Optical Switching and Networking, 2016, Volume 19, pp. 97-109, Available: https://doi.org/10.1016/j.osn.2015.03.005.
- [26] Deng, T.; Subramaniam, S. Covert Low-Power QoS Attack in All-Optical Wavelength Routed Networks, In Proceedings of the Globecom, 2004, Volume 3, pp. 1948-1952, Available: https://doi.org/10.1109/GLOCOM.2004.1378333.
- [27] Deloitte Touche Tohmatsu Ltd., Tapping of fibre networks, 2017.
- [28] Natalino, C.; Schiano, M.; Di Giglio, A.; Wosinska, L.; Furdek, M. Experimental Study of Machine-Learning-Based Detection and Identifi-cation of Physical-Layer Attacks in Optical Networks, J. Of Lightwave Techn., 2019, Volume 37(16), pp. 4173-4182, Available: https://doi.org/10.1109/JLT.2019.2923558.
- [29] Kowalczyk, M.; Marzecki, M.; Siuzdak, J. The Threat of Optical Transmission Jamming, J. of Telecommunications and Information Tech-nology, 2023, Volume 4(4), pp. 93-101, Available: https://doi.org/10.26636/jtit.2023.4.1402.
- [30] Furdek, M. Towards Secure and Self-Diagnosable Optical Networks, In Proceedings of the Photonics in Switching and Computing (PSC), 19-21 September 2018, Available: https://doi.org/10.1109/PS.2018.8751355.
- [31] Khan, F. N. Data perspectives in AI-assisted fiber-optic communication networks, IEEE Network, 2023, pp. 1-8, Available: https://doi.org/10.1109/MNET.130.2200413.
- [32] Natalino, C.; Schiano, M.; Di Giglio, A.; Wosinska, L.; Furdek, M. Field Demonstration of Machine-Learning-Aided Detection and Identification of Jamming Attacks in Optical Networks, In Proceedings of the 2018 European Conference on Optical Communication (ECOC), 2018, Avail-able: https://doi.org/10.1109/ECOC.2018.8535155.
- [33] Kang, X.; Wang, R.; Jiang, M.; Li E.; Li, Y.; Yan, X.; Wang, T.; Ren Z. Experimental study of machine-learning-based detection and location of eavesdropping in end-to-end optical fiber communications, Optical Fiber Technology, 2022, Volume 68(102807), Available: https://doi.org/10.1016/j.yofte.2021.102669.
- [34] Song, H.; Lin, R.; Sgambelluri, A.; Cugini, F.; Li, Y.; Zhang, J.; Monti, P. Cluster-based Method for Eavesdropping Identifi-cation and Localization in Optical Links, In Proceedings of the Asia Communications and Photonics Conference (ACP), 2023, Available: https://doi.org/10.48550/arXiv.2309.14541.
- [35] Song, H.; Lin, R.; Li, Y.; Lei, Q.; Zhao, Y.; Wosinska, L.; Monti, P.; Zhang J. Machine-learning-based method for fiber-bending eavesdrop-ping detection, Optics Letters, 2023, Volume 48(12/15), pp. 3183-3186, Available: https://doi.org/10.1364/OL.487214
- [36] Bensalem, M.; Singh, S. K., and Jukan, A. On Detecting and Pre-venting Jamming Attacks with Machine Learning in Optical Net-works, In Proceedings of the IEEE Global Communications Confer-ence (GLOBECOM), pp. 1-6, 2019, Available: https://doi.org/10.20944/preprints201901.0311.v1
- [37] Tomasov, A.; Dejdar, P.; Horvath, T.; Munster P. Physical fiber security by the state of polarization change detection, In Proceedings of SPIE 12105, Fiber Optic Sensors and Applications XVIII, 1210507, 2022, Available: https://doi.org/10.1117/12.2618490
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
2. The work has been financed by internal grant of the Warsaw University of Technology No. 820/341/Z01/POB3/2021.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-874288b4-db1e-4f8c-ad80-19b9f5693606
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.