PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Design and computation of a lightning protection system in an urban 110 kV substation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A lightning protection system (LPS) of an urban 110 kV substation is designed and analysed according to NFPA 780 and IEC 62305-3 standards. The analysis of the LPS is established on the value of risk assessment. The total area of the plant is described by one soil layer with uniform resistivity. This study aims to improve the understanding of an unexpected manner of the grounding system beneath lightning currents by clarifying the basic concepts of the lightning protection level and the new design procedure in this paper was clarified according to NFPA-780 level 1 for a lightning protection system. The program is integrated with the CDEGS software, which provides effective geometrical modeling with object and result visualization. Furthermore, module and automated fast Fourier transform (FFT) is implemented in this study to simulate electromagnetic fields in the time and frequency domains. These current values are compared to the desired protection levels within the standards. The study results show that for the improved protection of the system against lightning, the total power grid must be considered as a source of improvement for studying shielding influence and the protection levels provided inside this substation.
Rocznik
Strony
723--738
Opis fizyczny
Bibliogr. 46 poz., rys., tab., wz.
Twórcy
  • North China Electric Power University China
autor
  • North China Electric Power University China
autor
  • North China Electric Power University China
Bibliografia
  • [1] He J., Wang X., Yu Z., Zeng R., Statistical analysis on lightning performance of transmission lines in several regions of China, IEEE Transactions on Power Delivery, vol. 30, pp. 1543–1551 (2015).
  • [2] Franc B., Filipović-Grčić B., Milardić V., Lightning overvoltage performance of 110 kV air-insulated substation, Electric Power Systems Research, vol. 138, pp. 78–84 (2016).
  • [3] Rizk F.A., Analysis of space charge generating devices for lightning protection: Performance in slow varying fields, IEEE Transactions on Power Delivery, vol. 25, pp. 1996–2006 (2010).
  • [4] Takami J., Tsuboi T., Yamamoto K., Okabe S., Baba Y., Lightning surge characteristics on inclined incoming line to substation based on reduced-scale model experiment, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 20, pp. 739–746 ( 2013).
  • [5] Grcev L., Modeling of grounding electrodes under lightning currents, IEEE Transactions on Electromagnetic Compatibility, vol. 51, pp. 559–571 (2009).
  • [6] Ndungu C., Nderu J., Ngoo L., Hinga P., Lightning protection of HIV substations at coastal region and enhanced earthing system – Case study, IEEE AFRICON, pp. 1319–1324 (2017).
  • [7] Melodi A., Oyeleye M., Modeling of Lightning Strike Events, and its Correlational with Power Outages in South-West Coast, Nigeria, International Journal of Electrical and Computer Engineering, vol. 7, pp. 3262–3270 (2017).
  • [8] Gouda Ossama E., El Dein Adel Z., Amer Ghada M., Parameters affecting the back flashover across the overhead transmission line insulator caused by lightning, In: Proceedings of the 14th International Middle East Power Systems Conference (MEPCON’10), Cairo University, vol. 111, pp. 44–49 (2010).
  • [9] Yong Liu., Bowen Xia., Boxue Du., Masoud Farzaneh, Influence of Fine Metal Particles on Surface Discharge Characteristics of Outdoor Insulators, Energies, vol. 9, pp. 1–13 (2016).
  • [10] Taheri Sh., Gholami A., Mirzaei M., Study on the behavior of polluted insulators under lightning impulse stress, Electric Power Components and Systems, vol. 37, pp. 1321–1333 (2009).
  • [11] Mahdi Izadi, Muhammad Syahmi, Abd Rahman, Mohd Zaina, Abidin Ab-Kadir, Chandima Gomes, Jasronita Jasni, Maryam Hajikhani, The influence of lightning induced voltage on the distribution power line polymer insulators, PLOS ONE, vol. 12, pp. 1–12 (2017), DOI: 10.1371/journal.pone.0172118.
  • [12] Saeedollah Talaei Mobarakei, Taghi Sami, Babak Porkar, Back Flashover Phenomenon Analysis in Power Transmission Substation for Insulation Coordination, 11th International Conference on Environment and Electrical Engineering, Italy, pp. 1–5 (2012), DOI: 10.1109/EEEIC.2012.6221567.
  • [13] Christodoulou C.A., Vita V., Ekonomou L., Studies for the more effective protection of MV/LV substations against lightning overvoltages, International Journal of Circuits and Electronics, vol. 2, pp. 11–15 (2017).
  • [14] Christodoulou C.A., Vita V., Voglitsis D., Milushev G., Ekonomou L., A heuristic method for the reduction of the outage rate of high-voltage substations due to atmospheric overvoltages, Applied Sciences, vol. 8, pp. 1–12 (2018), DOI: 10.3390/app8020273.
  • [15] Christodoulou C.A., Vita V., Mitropoulou A., Oikonomou D.S., Ekonomou L., Interface construction for the computation of the optimum installation position of metal oxide surge arresters in medium voltage substations, Proceedings of the 5th IASME/WSEAS International Conference on Energy and Environment (EE’ 10), University of Cambridge, United Kingdom, pp. 334–338 (2010).
  • [16] IEC 62305–1 Ed. 2: Protection against Lightning – Part 1: General Principles (2010).
  • [17] Heidler F., Cvetić J., A class of analytical functions to study the lightning effects associated with the current front, European Transaction on Electric Power (ETEP), vol. 12, pp. 141–150 (2002).
  • [18] Terespolsky B.R., Nixon K.J., Developing an approximate ion to the Heidler function – with an analytical transformation into the frequency domain, International Conference on Lightning Protection (ICLP), pp. 1326–1330 (2014).
  • [19] Mikihisa Saito, Masaru Ishii, Characteristics of return strokes associated with upward lightning flashes observed in winter, 34th International Conference on Lightning Protection (ICLP), pp. 1–5 (2018).
  • [20] Chandrasekaran K., Gururaj S. Punekar, Horizontal component of electric field due to lightning return strokes, Journal International Conference on Power and Energy Systems, pp. 1–4 (2011).
  • [21] Christodoulou C.A., Vita V., Maris T.I., Lightning protection of distribution substations by using metal oxide gapless surge arresters connected in parallel, International Journal of Power and Energy Research, vol. 1, pp. 1–7 (2017).
  • [22] Moreira R.K., Moreira A.K., Coelho G.H.L., Moreira G.T.K., Design of special lightning protection system for opened sites and structures under construction: Dangerous potentials evaluation and mitigation, International Symposium on Lightning Protection (XII SIPDA), pp. 348–353 (2013).
  • [23] Parise G., Martirano L., Lucheroni M., Level, Class, and Prospected Safety Performance of a Lightning Protection System for a Complex of Structures (LPCS), IEEE Transactions on Industry Applications, vol. 46, pp. 2106–2110 (2010).
  • [24] Sanders M.K., NFPA 780 standard for the installation of lightning protection systems, IEEE Industrial and Commercial Power Systems Technical Conference (I&CPS), pp. 1–4 (2011).
  • [25] Borghetti A., Cozzani V., Mazzetti C., Nucci C.A., Paolone M., Renni E., Monte Carlo based lightning risk assessment in oil plant tank farms, 30th International Conference on Lightning Protection (ICLP), pp. 1–7 (2010).
  • [26] Ballarotti M.G., Medeiros C., Saba M.F., Schulz W., Pinto O., Frequency distributions of some parameters of negative downward lightning flashes based on accurate-stroke-count studies, Journal of Geophysical Research-Atmospheres, vol. 117, pp. 1–8 (2012).
  • [27] Tong C., Wang Q., Gao Y., Tong M., Luo J., Dynamic lightning protection of smart grid distribution system, Electric Power Systems Research, vol. 113, pp. 228–236 (2014).
  • [28] Abd-Elhady A.M., Sabiha N.A., Izzularab M.A., Experimental evaluation of air-termination systems for wind turbine blades, Electric Power Systems Research, vol. 107, pp. 133–143 (2014).
  • [29] Necci A., Antonioni G., Cozzani V., Krausmann E., Borghetti A., Nucci C.A., A model for process equipment damage probability assessment due to lightning, Reliability Engineering and System Safety, vol. 115, pp. 91–99 (2013).
  • [30] Stefanescu S., Botezan A., Overview of the protection lightning standards suite EN/IEC 62305, International Conference and Exposition on Electrical and Power Engineering, pp. 504–509 (2016).
  • [31] Dehn+Söhne Lightning Protection Guide, DEHN protects (2014).
  • [32] Li D., Azadifar M., Rachidi F., Rubinstein M., Paolone M., Pavanello D. et al., On lightning electromagnetic field propagation along an irregular terrain, IEEE Transactions on Electromagnetic Compatibility, vol. 58, pp. 161–171 (2016).
  • [33] Pavanello D., Rachidi F., Rakov V., Nucci C., Bermudez J., Return stroke current profiles and electromagnetic fields associated with lightning strikes to tall towers: Comparison of engineering models, Journal of electrostatics, vol. 65, pp. 316–321 (2007).
  • [34] Grange F., Journet S., Fortin S., Dawalibi F.P., Transient analysis of soil resistivity influence on lightning generated magnetic field, International Symposium on Lightning Protection (XII SIPDA), pp. 192–196 (2013).
  • [35] Liu X.T., Wang W., Yu H., Electromagnetic Effect on Underground Pipeline of the Lightning Strike 330 kV Transmission Lines, 4th International Conference on Information Science and Control Engineering (ICISCE), pp. 1487–1491 (2017).
  • [36] Akbari M., Sheshyekani K., Pirayesh A., Rachidi F., Paolone M., Borghetti A. et al., Evaluation of lightning electromagnetic fields and their induced voltages on overhead lines considering the frequency dependence of soil electrical parameters, IEEE Transactions on Electromagnetic Compatibility, vol. 55, pp. 1210–1219 (2013).
  • [37] He J., Zhang B., Progress in lightning impulse characteristics of grounding electrodes with soiln ionization, IEEE Transactions on Industry Applications, vol. 51, pp. 4924–4933 (2015).
  • [38] Sesnic S., Poljak D., Tkachenko S.V., Analytical modeling of a transient current flowing along the horizontal grounding electrode, IEEE transactions on electromagnetic compatibility, vol. 55, pp. 1132–1139 (2013).
  • [39] Yu C., Fu Z., Hou X., Tai H.M., Su X., Break-point diagnosis of grounding grids using transient electromagnetic apparent resistivity imaging, IEEE Transactions on Power Delivery, vol. 30, pp. 2485–2491 (2015).
  • [40] Zhang B., Wu J., He J., Zeng R., Analysis of transient performance of grounding system considering soil ionization by time domain method, IEEE Transactions on Magnetics, vol. 49, pp. 1837–1840 (2013).
  • [41] Alipio R., Visacro S., Impulse efficiency of grounding electrodes: Effect of frequency-dependent soil parameters, IEEE Transactions on Power Delivery, vol. 29, pp. 716–723 (2014)
  • [42] Visacro S., Alipio R., Frequency dependence of soil parameters: Experimental results, predicting formula and influence on the lightning response of grounding electrodes, IEEE Transactions on Power Delivery, vol. 27, pp. 927–935 (2012).
  • [43] Abdaldaim M., Li L., Wang P., The design of 110kV substation grounding grid with high resistivity soil, Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), pp. 1–3 (2017).
  • [44] Abdaldaim M., Li L., Wang P., The Design of 220 kV Substation Grounding Grid with Difference Soil Resistivity Using Wenner and Schlumberger Methods, International Conference on Electricity Distribution (CICED), pp. 2525–2530 (2018).
  • [45] Trainba M., Christodoulou C.A., Vita V., Ekonomou L., Lightning overvoltage and protection of power substations, WSEAS Transactions on Power Systems, vol. 12, pp. 107–114 (2017).
  • [46] Becerra M., Cooray V., Time dependent evaluation of the lightning upward connecting leader inception, Journal of Physics D: Applied Physic, vol. 39, pp. 4695–4702 (2006).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-873e1cbd-968b-4f84-8e80-2b15f6e2433c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.