PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Behavior of Jordanian Oil Shale during Combustion Process from the El-Lajjun Deposit

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The results of X-ray diffraction, thermogravimetric and FTIR spectroscopy analyses of mineral composition indicated that the El-Lajjun oil shale is principally composed of calcite, quartz with minor amounts of kaolinite), gypsum, and apatite. The obtained oil shale ash products at 830 °C and 1030 °C are dominated by lime, quartz, anhydrite, portlandite, gehlenite, and amorphous phases. The TGA weight loss curves clearly indicate that it occurred in the temperature range from 310 to 650 °C. The decomposition of oil shale carbonates was detected above 750°C. The functional groups in the organic material of oil shale are dominated by the aliphatic hydrocarbons, the semi-ash of which had diverse structures of polycyclic aromatic hydrocarbons. The most intensive of combustion occurred in the temperature range of 400–750 °C. In this temperature range, about 75 wt.% was accounted for the total mass loss.
Rocznik
Strony
133--140
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
  • Department of Natural Resources and Chemical Engineering, Tafila Technical University, P.O. Box 179, Tafila 66110, Jordan
  • Department of Mechanical Engineering, Tafila Technical University, P.O. Box 179, Tafila 66110, Jordan
  • Environmental Engineering Faculty, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
  • Department of Natural Resources and Chemical Engineering, Tafila Technical University, P.O. Box 179, Tafila 66110, Jordan
  • Department of Renewable Energy Engineering, Isra University, Amman 11622, Jordan
Bibliografia
  • 1. Abed A.M., Arouri K., Amiereh B.S., Al-Hawari Z. 2009. Characterization and genesis of some Jordanian oil shales. Dirasat, Pure Sciences, 36(1), 7–17.
  • 2. Ballan E., Marco Saitta A., Mauri F., Galas G. 2001. First-principles modeling of the infrared spectrum of kaolinite. American Mineralogist, 86, 1321–1330.
  • 3. Bai F.T., Wei G., Lu X.S., Liu Y.M., Guo M.Y., Li Q., Sun Y.H. 2015. Kinetic study on the pyrolysis behavior of Huadian oil shale via non-isothermal thermogravimetric data. Fuel, 146, 111–118.
  • 4. Bender F. 1974. Geology of Jordan. Contribution to the regional geology of the world. Gebrueder Borntraeger, Berlin, Germany, 196.
  • 5. Bseieso M.P. 2003. Jordan’s experience in oil shale studies employing different technologies. Oil Shale, 20(3), 360–370.
  • 6. Gougazeh M., Buhl J. Ch. 2010. Geochemical and mineralogical characterization of the Jabal Al-Harad kaolin deposit, southern Jordan, for its possible utilization. Clay Minerals, 45, 281–294.
  • 7. Gougazeh, M., Buhl J.-Ch. 2014. Synthesis and characterization of zeolite A by the hydrothermal transformation of natural Jordanian kaolin. Journal of the Association of Arab Universities for Basic and Applied Sciences, 15, 35–42.
  • 8. Gougazeh M. 2020. Beneficiation Study of Low-Grade Jordanian Kaolin to Increase the Brightness Index. Jordan Journal of Civil Engineering, 14(3), 319–3309.
  • 9. Gougazeh M. 2022. Beneficiation and upgrading of Jordanian oil shale. Physicochemical Problems of Mineral Processing, 58(3), 147092.
  • 10. Hamarneh Y. 1988. Oil Shale Deposits in Central Jordan: Ministry of Energy and Mineral Resources. Amman, Jordan.
  • 11. Hruljova J., Savest N., Oja V., Suuberg E.H. 2013. Kukersite oil shale kerogen solvents welling in binary mixtures. Fuel, 105, 77–82.
  • 12. Khraisha Y.H., Irqsousi N.A., Shabib I.M. 2003. Spectroscopic and chromatographic analysis of oil from an oil shale flash pyrolysis unit. Energy Conversion and Management, 44, 125–135.
  • 13. Larsen J.W., Parikh H.M., Michels R., Raoult N., Pradier B. 2000. Kerogen macromolecular structure. Preprints Symposium American Chemical Society, Division of Fuel Chemistry, Dallas, TX (USA), 45, 211–215.
  • 14. Saikia B.K., Ward C.R., Oliveira M.L.S., Hower J.C., Leao F.D., Johnston M.N., O’Bryan A., Sharma A., Baruah B.P. Silva L.F.O. 2015a. Geochemistry and nano-mineralogy of feed coals, mine overburden, and coal-derived fly ashes from Assam (North-east India): A multi-faceted analytical approach. International Journal of Coal Geology, 137, 19–37.
  • 15. Shaohui G. 2000. Solvent extraction of Jordanian oil shale kerogen. Oil Shale, 17(3), 266–670.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-873a5b75-e510-4ca7-8725-e4078eb46b97
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.