PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

IYQ2025 in Europe and Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Quantum information technologies QIT have two separate but entangled layers - material and ideological. Material layer embraces algorithms, physical devices and systems. Cognitive layer is related to the boundaries and structure of our knowledge, including the magic of nonlocal interactions and subtleties of contextuality. The paradox is that QIT should use quantum magic as a resource to turn into functional utility. The International Year of Quantum Science and Technology is celebrated in Europe, Poland and elsewhere. Opening conference at the UNESCO headquarters in Paris was attended by representatives of the Polish Ministry of Science and Higher Education, and some quantum science groups. Several scientific conferences organized in Poland were announced to the IYQ25 calendar, including: May Symposia of Information and Quantum Horizons in Gdańsk, August Max Born Optical Symposium in Wrocław, September Congress of the Polish Physicists in Katowice. Quantum research projects are realized in Poland, QuantERA, tasks included in the European Quantum Flagship EQF, construction of quantum equipment by university consortia MIKOK, quantum networks and others.
Twórcy
Bibliografia
  • [1] R.Romaniuk, IYL 2015 in Poland, IJET, 2014, 60(4):341-346, https://doi.org/10.2476/eletel-2014-0045
  • [2] R.Romaniuk, Szkło, Elektronika, 2022, 63(12):10-16, https://doi.org/10.15199/13.2022.12.1
  • [3] UNESCO, 2025, International Year of Quantum Science and Technology, unesco.org
  • [4] 100 years of quantum is just the beginning, quantum2025.org
  • [5] European Quantum Technologies Flagship
  • [6] QUANTERA [quantera.eu] The science of today is the technology of tomorrow
  • [7] R.Romaniuk, 2023, European quantum strategy - global and local consequences, International Journal of Electronics and Telecommunications, 69(1):199-209, https://doi.org/10.24425/ijet.2023.144351
  • [8] R.Romaniuk, 2023, Quantum Europe, Quantum Poland, International Journal of Electronics and Telecommunications 69(2):391-398, https://doi.org/10.24425/ijet.2023.144375
  • [9] QuantERA Polska [ncn.gov.pl/quantera]
  • [10] KIG Komitet Technologii Kwantowych [kig.pl/o-nas/komitety-kig]
  • [11] Centrum Doskonałości Technologii Kwantowych i Jądrowych, Politechnika Warszawska [https://www.pw.edu.pl/aktualnosci/startuje-c-quant-centrum-doskonalosci-technologii-kwantowych-i-jadrowych]
  • [12] Max Planck, 1901 Ann.Phys. 309(3), 553-563, https://doi.org/10.1002/andp.19013090310
  • [13] Albert Einstein, 1905 Ann.Phys. 322(6), 132-148, https://doi.org/10.1002/andp.19053220607
  • [14] Niels Bohr, 1913 Philos.Mag. Ser.6, 26(151), https://doi.org/10.1080/14786441308634955
  • [15] Walther Gerlach, Otto Stern, 1922 Z.Phys. 9, 349-352, https://doi.org/10.1007/BF01326983
  • [16] Arthur Compton, 1923 Phys.Rev, 21, 483, https://doi.org/10.1103/PhysRev.21.483
  • [17] Werner Heisenberg, 1925 Z.Phys. 33, 879-893, https://doi.org/10.1007/BF01328377
  • [18] Wolfgang Pauli, 1925 Z.Phys. 31, 373-385, https://doi.org/10.1007/BF02980592
  • [19] Louis de Broglie, 1925 Ann.Phys. 10(3), 22-128, https://doi.org/10.1051/anphys/192510030022
  • [20] Erwin Schrodinger, 1926 Ann.Phys. 384(4), 361-376, https://doi.org/10.1002/andp.19263840404
  • [21] Max Born, 1927 Z.Phys. 40, 167-192, https://doi.org/10.1007/BF01400360
  • [22] Paul A.M.Dirac, 1928 Proc.R.Soc.A 117(778), 610-624, https://doi.org/10.1098/rspa.1928.0023
  • [23] Felix Bloch, 1929 Z.Phys. 52, 555-600, https://doi.org/10.1007/BF01339455
  • [24] Albert Einstein, Boris Podolsky, Nathan Rosen, May 1935, Can quantum-mechanical description of physical reality be considered complete?, Phys.Rev. 47, 777-780, https://doi.org/10.1103/PhysRev.47.777
  • [25] Niels Bohr, October 1935, Can quantum-mechanical description of physical reality be considered complete?, Phys.Rev. 48, 696-702, https://doi.org/10.1103/PhysRev.48.696
  • [26] Erwin Schrodinger, 1935 Naturwissenschaften 23, 807-812, https://doi.org/10.1007/BF01491891
  • [27] David Bohm, 1952 A suggested interpretation of the quantum theory in terms of “hidden” variables. I, Phys. Rev. 85, 166, https://doi.org/10.1103/PhysRev.85.166
  • [28] Yakir Aharonov, David Bohm, 1959, Significance of electromagnetic potentials in the quantum theory, Phys. Rev. 115, 485, https://doi.org/10.1103/PhysRev.115.485
  • [29] John S.Bell, 1964, On the Einstein Podolsky Rosen paradox, Phys.Phys.Fiz. 1(3), 195-200, https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
  • [30] S. Kochen; E. P. Specker, 1967, The problem of hidden variables in quantum mechanics, Journal of Mathematics and Mechanics. 17 (1): 59-87, https://doi.org/10.1512/iumj.1968.17.17004
  • [31] J.F. Clauser; M.A. Horne; A. Shimony; R.A. Holt (1969), "Proposed experiment to test local hidden-variable theories", Phys. Rev. Lett., 23 (15): 880-4, Bibcode:1969PhRvL..23..880C, https://doi.org/10.1103/PhysRevLett.23.880
  • [32] Stuart J. Freedman and John F. Clauser, 1972, Experimental test of local hidden-variable theories, Phys. Rev. Lett. 28, 938, https://doi.org/10.1103/PhysRevLett.28.938
  • [33] Tsirelson, B. S. (March 1980). "Quantum generalizations of Bell's inequality". Letters in Mathematical Physics. 4 (2): 93-100. Bibcode:1980LMaPh...4...93C. https://doi.org/10.1007/BF00417500.S2CID_120680226
  • [34] Alain Aspect, Jean Dalibard, Gerard Roger, 1982, Experimental test of Bell’s inequalities using time-varying analyzers, Phys. Rev. Lett. 49, 1804, https://doi.org/10.1103/PhysRevLett.49.1804
  • [35] William K. Wootters, Wojciech H. Zurek, 1982, A single quantum cannot be cloned, Nature (London) 299, 802-803
  • [36] Charles H. Bennett and Gilles Brassard, 1984, Quantum cryptography: Public key distribution and coin tossing, Proceedings of the International Conference on Computers, Systems & Signal Processing Vol. 1, pp. 175-179
  • [37] David Deutsch, 1985, Quantum theory, the Church-Turing principle and the universal quantum computer, Proc. R. Soc. A 400, 97
  • [38] Daniel M.Greenberger, Michael A.Horne, Abner Shimony, Anton Zeilinger, 1990, Am.J.Phys. 58, 1131-1143, https://doi.org/10.1119/1.16243
  • [39] Sandru Popescu and Daniel Rohrlich, 1994, Quantum nonlocality as an axiom, Found. Phys. 24, 379
  • [40] Peter W. Shor, 1994, Algorithms for quantum computation: Discrete logarithms and factoring, Proceedings 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, pp. 124-134;
  • [41] L. K. Grover, 1997, Quantum mechanics helps in searching for a needle in a haystack, Phys.Rev.Lett. 79,325
  • [42] A.W.Harrow, A.Hassidim, S.Lloyd, 2008, Quantum algorithm for linear systems of equations, Physical Review Letters. 103 (15): 150502. arXiv:0811.3171, https://doi.org/10.1103/PhysRevLett.103.150502
  • [43] C.Okay et al, 2022, Mermin polytopes in quantum computation and foundations, arXiv:2210.10186
  • [44] Narodowe Centrum Informacji Kwantowej [https://kcik.ug.edu.pl/].
  • [45] QuantERA [quantera.eu], [ncn.gov.pl/quantera]
  • [46] National Quantum Initiative [quantum.gov/iyq-2025/].
  • [47] Frontiers in Optics [frontiersinoptics.com]
  • [48] IEEE Quantum Week [https://qce.quantum.ieee.org/2025/]
  • [49] R.V.Buniy, S.D.Hsu, 2012, Everything is entangled, arXiv:1205.1584
  • [50] Ch.deRonde, et al, 2024, Everything is entangled in quantum mechanics: are the orthodox measures physically meaningful?, arXiv:2405.05756
  • [51] R.Romaniuk, 2025, IYQ2025 - Międzynarodowy Rok Kwantowy, Elektronika, vol.66, no.6, pp.2-9, https://doi.org/10.15199/13.2025.6.1
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87385452-cd25-4d4e-91a3-461fc2ad6024
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.