Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Study on the influence of ultrafine titanium slag on the properties of ultra-high performance concrete
Języki publikacji
Abstrakty
Niniejsza praca ma na celu opracowanie ekologicznego, ekonomicznego betonu ultrawysokowartościowego [UHPC] z wykorzystaniem żużla tytanowego. Wpływ ultradrobnego żużla tytanowego na proces hydratacji, właściwości mechaniczne i mikrostrukturę UHPC był systematycznie badany. Zbadano ciepło hydratacji i właściwości mechaniczne, a także dokonano obserwacji mikrostruktury. Ponadto wykonano badania XRD, TG, mikrotwardości i analizę struktury porów. Wyniki wskazują, że zastąpienie granulowanego żużla wielkopiecowego ultradrobnym żużlem tytanowym przyspiesza hydratację w UHPC, powodując tworzenie się większej ilości produktów hydratacji. Ultradrobny żużel tytanowy ma korzystny wpływ na optymalizację struktury porów, wzmacniając strefę kontaktu kruszywo-zaczyn w UHPC i zwiększając mikrotwardość zaczynu. UHPC z dodatkiem ultradrobnego żużla tytanowego wykazuje lepsze właściwości mechaniczne w porównaniu z betonem kontrolnym, a właściwości początkowo ulegają polepszeniu, a następnie pogorszeniu wraz ze wzrostem zawartości ultradrobnego żużla tytanowego.
This work aims to develop a green, cost-effective ultra-high performance concrete [UHPC] by utilizing titanium slag. The impact of ultra-fine titanium slag on the hydration process, mechanical properties, and microstructure of UHPC was systematically investigated by employing various testing methods including hydration heat and mechanical property assessments, along with microscopic analysis techniques such as XRD, TG, microhardness and pore structure analysis. The findings indicate that substituting granulated blast furnace slag with ultra-fine titanium slag accelerates the reaction in UHPC, accelerating the formation of hydration products. The ultra-fine titanium slag demonstrates exceptional performance in optimizing the pore structure, enhancing the interfacial transition zone of UHPC, and increasing the paste microhardness. UHPC mixed with ultra-fine titanium slag exhibits superior mechanical properties compared to the control sample, with these properties initially increasing and then decreasing as the content of ultra-fine titanium slag increases.
Wydawca
Czasopismo
Rocznik
Tom
Strony
2--13
Opis fizyczny
Bibliogr. 37 poz., il., tab.
Twórcy
autor
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, China
autor
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, China
autor
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, China
autor
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, PR China
autor
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, PR China
Bibliografia
- 1. J.A. Patel, D.B. Raijiwala, Use of Sugar Cane Bagasse Ash as Partial Replacement of Cement in Concrete An Experimental Study, (5) (2015).
- 2. R. Yu, X. Zhang, Y. Hu, J. Li, F. Zhou, K. Liu, J. Zhang, J. Wang, Z. Shui, Development of a rapid hardening ultra-high performance concrete (R-UHPC): From macro properties to micro structure. Constr. Build. Mater. 329, 127188 (2022). https://doi.org/10.1016/j.conbuildmat.2022.127188
- 3. J. Xi, J. Liu, K. Yang, S. Zhang, F. Han, J. Sha, X. Zheng, Role of silica fume on hydration and strength development of ultra-high performance concrete. Constr. Build. Mater. 338, 127600 (2022). http://dx.doi.org/10.1016/j.conbuildmat.2022.127600
- 4. A.S. Faried, S.A. Mostafa, B.A. Tayeh, T.A. Tawfik, Mechanical anddurability properties of ultra-high performance concrete incorporated withvarious nano waste materials under different curing conditions. J. Build. Eng. 43(5), 102569 (2021). http://dx.doi.org/10.1016/j.jobe.2021.102569
- 5. Y. Lin, J. Yan, Z. Wang, F. Fan, C. Zou, Effect of silica fumes on fluidity of UHPC: Experiments, influence mechanism and evaluation methods, Constr. Build. Mater. 210, 451-460 (2019). https://doi.org/10.1016/j.conbuildmat.2019.03.162
- 6. J. Li, Z. Wu, C. Shi, Q. Yuan, Z. Zhang, Durability of ultra-high performance concrete – A review. Constr. Build. Mater. 255, 119296 (2020).https://doi.org/10.1016/j.conbuildmat.2020.119296
- 7. C. Shi, Z. Wu, J. Xiao, D. Wang, Z. Huang, Z. Fang, A review on ultra high performance concrete: Part I. Raw materials and mixture design. Constr. Build. Mater. 101(1), 741-751 (2015). https://doi.org/10.1016/j.conbuildmat.2015.10.088
- 8. Y. Su, C. Wu, J. Li, Z.X. Li, W. Li, Development of novel ultra-high performance concrete: From material to structure. Constr. Build. Mater. 135, 517-528 (2017). https://doi.org/10.1016/j.conbuildmat.2016.12.175
- 9. M.S. Meddah, M.A. Ismail, S. El-Gamal, H. Fitriani, Performances evaluation of binary concrete designed with silica fume and metakaolin. Constr. Build. Mater. 166, 400-412 (2018). https://doi.org/10.1016/j.conbuildmat.2018.01.138
- 10. A.M. Zeyad, M.A.M. Johar, A. Abutaleb, B.A. Tayeh, The effect of steam curing regimes on the chloride resistance and pore size of high-strength green concrete. Constr. Build. Mater. 280, 122409 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122409
- 11. R. Yu, P. Spiesz, H.J.H. Brouwers, Development of an eco-friendly Ultra-High Performance Concrete (UHPC) with efficient cement and mineral admixture uses. Cem. Concr. Comp. 55(1), 383-394 (2015). https://doi.org/10.1016/j.cemconcomp.2014.09.024
- 12. M. Aldahdooh, N.M. Bunnori, M.A.M. Johari, Influence of palm oil fuel ash on ultimate flexural and uniaxial tensile strength of green ultra-high performance fiber reinforced cementitious composites. Mater. Des. 54, 694-701 (2014). https://doi.org/10.1016/j.matdes.2013.08.094
- 13. Z.H. He, H.N. Zhu, M.Y. Zhang, J.Y. Shi, S.G. Du, B. Liu, Autogenous shrinkage and nano-mechanical properties of UHPC containing wastebrick powder derived from construction and demolition waste. Constr. Build. Mater. 306, 124869 (2021). http://dx.doi.org/10.1016/j.conbuildmat.2021.124869
- 14. E.Ghafari, S.A.Ghahari, H.Costa, E.Júlio, A. Portugal, L. Durães, Effect of supplementary cementitious materials on autogenous shrinkage of ultra-high performance concrete. Constr. Build. Mater. 127, 43-48 (2016). https://doi.org/10.1016/j.conbuildmat.2016.09.123
- 15. A. Tafraoui, G. Escadeillas, S. Lebaili, T. Vidal, Metakaolin in the formulation of UHPC. Constr. Build. Mater. 23(2), 669-674 (2009). http://dx.doi.org/10.1016/j.conbuildmat.2008.02.018
- 16. N.K. Lee, K.T. Koh, M.O. Kim, G.S. Ryu, Uncovering the role of micro silica in hydration of ultra-high performance concrete (UHPC). Cem. Concr. Res. 104, 68-79 (2018). https://doi.org/10.1016/j.cemconres.2017.11.002
- 17. P. Richard, M. Cheyrezy, Composition of reactive powder concretes. Cem. Concr. Res. 25(7), 1501-1511 (1995). https://doi.org/10.1016/0008-8846(95)00144-2
- 18. N.A. Soliman, A. Tagnit-Hamou, Partial substitution of silica fume with fine glass powder in UHPC: Filling the micro gap. Constr. Build. Mater.139, 374-383 (2017). https://doi.org/10.1016/j.conbuildmat.2017.02.084
- 19. J.J. Thomas, H.M. Jennings, J.J. Chen, Influence of Nucleation Seeding on the Hydration Mechanisms of Tricalcium Silicate and Cement. J. Phys. Chem. C 113(11), 4327-4334 (2009). http://dx.doi.org/10.1021/jp809811w
- 20. K. Habel, M. Viviani, E. Denarié, E. Brühwiler, Development of the mechanical properties of an Ultra-High Performance Fiber Reinforced Concrete (UHPFRC). Cem. Concr. Res. 36(7), 1362-1370 (2006). http://dx.doi.org/10.1016/j.cemconres.2006.03.009
- 21. Z. Mo, R. Wang, X. Gao, Hydration and mechanical properties of UHPC matrix containing limestone and different levels of metakaolin. Constr. Build. Mater. 256, 119454 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119454
- 22. J. Jing, Y.F. Guo, S. Wang, F. Chen, L. Yang, G. Qiu, Recent Progressin Electric Furnace Titanium Slag Processing and Utilization: A Review. Crystals 12(7), 12070958 (2022). https://doi.org/10.3390/cryst12070958
- 23. X. Feng, L.Y. Jiang. B, Y. Song, Titanium white sulfuric acid concentration by direct contact membrane distillation. Chem. Eng. J. 285, 101-111(2016). http://dx.doi.org/10.1016/j.cej.2015.09.064
- 24. T. Zhang, B. Huang, Application of Pre-Wetted High Titanium Heavy Slag Aggregate in Cement Concrete. Materials 15(3), 15030831 (2022).https://doi.org/10.3390/ma15030831
- 25. S. Gao, S. Xu, Toughness study on PVA fiber reinforced cementitious composites using total work done by horizontal load. J. Southeast Univ.37, 324-329 (2007).
- 26. H.E. Zhi-Jun, Research on Preparation of Concrete with Pulverized Titanium Slag. China Harbour Engineering (2004).
- 27. S.L. Otoo, Q. Li, Y. Wu, G. Lai, N.O. Amu-Darko, C. Deng, S. Li, W. Chen, Utilization of Titanium Slag in Cement Grout for Gamma Radiation Shielding: Hydration, Microstructure, Mechanical Properties and Gamma-Ray Attenuation Performance. Constr. Build. Mater. 402, 133031 (2023). https://doi.org/10.1016/j.conbuildmat.2023.133031
- 28. J. Wang, J. Li, Y. Gao, Z. Lu, L. Hou, Mechanical and Drying Shrinkage Performance Study of Ultra-High-Performance Concrete Prepared from Titanium Slag under Different Curing Conditions. Materials 17(17), 17174201 (2024). https://doi.org/10.3390/ma17174201
- 29. Y. Wang, J. Wang, Y. Wu, Y. Li, X. He, Y. Su, B. Strnadel, Preparation of sustainable ultra-high performance concrete (UHPC) with ultra-fine glass powder as multi-dimensional substitute material. Constr. Build. Mater. 401, 132857 (2023). https://doi.org/10.1016/j.conbuildmat.2023.132857
- 30. Y. Wang, Z. Yuan, J. Yang, Y. He, X. He, Y. Su, B. Strnadel, Utilization of ultra-fine copper slag to prepare eco-friendly ultrahigh performance concrete by replacing silica fume, Construction and Building Materials 406(000) (2023) 9.
- 31. J.K. Sun, S.H. Huang, W. Chen, B. Li, J. Liu, Experimental Study on Mechanics Performance of Complex High Titanium Heavy Slag Concrete. Adv. Mater. Res. 671-674(2), 1800-1804 (2013). http://dx.doi.org/10.4028/www.scientific.net/AMR.671-674.1800
- 32. L.F. Jochem, C.A. Casagrande, L. Onghero, P.J.P. Gleize, Effect of partial replacement of the cement by glass waste on cementitious pastes. Constr. Build. Mater. 273, 121704 (2020). http://dx.doi.org/10.1016/j.conbuildmat.2020.121704
- 33. P. Pormmoon, P. Charoenamnuaysuk, C. Jaturapitakkul, P. Chindaprasirt, W. Tangchirapat, Strength, shrinkage, heat evolution, and microstructure of high performance concrete containing high proportions of ground bottom ash blended with fly ash. J. Sust. Cem. Bas. Mater.12(10), 1270-1285 (2023). http://dx.doi.org/10.1080/21650373.2023.2214138
- 34. H. Choi, W. Lee, J.E. Lee, H.S. Chung, W.S. Choi, Ultra-fine grinding of inorganic powders by stirred ball mill: Effect of process parameters on the particle size distribution of ground products and grinding energy efficiency. Met. Mater. Int. 13(4), 353-358 (2007). http://dx.doi.org/10.1007/BF03027893
- 35. L. Sun, X. Zhu, M. Kim, G. Zi, Alkali-silica reaction and strength of concrete with pretreated glass particles as fine aggregates. Constr. Build. Mater. 271(7), 121809 (2021). http://dx.doi.org/10.1016/j.conbuildmat.2020.121809
- 36. G. Liang, D. Ni, H. Li, B. Dong, Z. Yang, Synergistic effect of EVA, TEA and C-S-Hs-PCE on the hydration process and mechanical properties of Portland cement paste at early age. Constr. Build. Mater. 272(1), 121891 (2021). https://doi.org/10.1016/j.conbuildmat.2020.121891
- 37. Y. Wang, X. Li, W.J. Miao, B. Jiang, Y. Su, X. He, M. Ma, B. Strnadel, Mechanical and microstructure development of Portland cement modified with micro-encapsulated phase change materials. Constr. Build. Mater. 304, 124652 (2021). https://doi.org/10.1016/j.conbuildmat.2021.124652
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-872ecdfb-376f-403e-a261-752c327911de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.