PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Optimized Approach of Feature Selection Based on Binary Genetic Algorithm in Classification of Induction Motor Faults

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, an effective model for detection and classification of multiple faults in induction motors is presented. It used S-transform method is used to analyze current signals measured from four different motors including a healthy motor, broken rotor bars, bearing damage, stator winding short-circuits fault. The feature set is extracted based on signal spectrum. With strong exploration capabilities in the search space, binary genetic algorithm (BGA) is proposed to select the optimal feature subset. As the classifier, the backpropagation neural network and support vector machine are used. The simulation results showed that the average accuracy of 100 trails is 98.3\% and the optimal feature subset equal to 36\% of total original features. That means the number of redundant features removed is 64\%. In conclusion, the proposed model combined with BGA reached highly effective in the classification of induction motor.
Rocznik
Tom
Strony
145--150
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
autor
  • Institute Of Engineering Technology Thu Dau Mot University Binh Duong, Vietnam
Bibliografia
  • [1] A. Choudhary, D. Goyal, S.L. Shimi, et al., “Condition Monitoring and Fault Diagnosis of Induction Motors: A Review,” Arch. Computat. Methods. Eng., vol. 26, no. 4, pp. 1221–1238, Sep. 2019.
  • [2] H. Henao, G. Capolino, M. Fernandez-Cabanas, F. Filippetti, C. Bruzzese, E. Strangas, S. Hedayati-Kia, “Trends in Fault Diagnosis for Electrical Machines: A Review of Diagnostic Techniques,” IEEE Ind. Electron. Mag., vol. 8, no. 2, pp. 31-42, Jun. 2014.
  • [3] T. Yang, H. Pen, Z. Wang, “Feature Knowledge Based Fault Detection of Induction Motors Through the Analysis of Stator Current Data,” IEEE Trans. Instrum. Meas., vol. 65, no. 3, pp. 549-558, Jan. 2016.
  • [4] K. Li, P. Chen, H. Wang, “Intelligent Diagnosis Method for Rotating Machinery Using Wavelet Transform and Ant Colony Optimization,” IEEE Sens. J., vol. 12, no. 7, pp. 2474-2484, Apr. 2012.
  • [5] C.Y. Lee and T.A. Le, “Intelligence bearing fault diagnosis model using multiple feature extraction and binary particle swarm optimization with extended memory,” IEEE Access, vol. 8, pp. 198343-198356, Nov. 2020.
  • [6] LH. Wang, XP. Zhao, JX. Wu, et al., “Motor Fault Diagnosis Based on Short-time Fourier Transform and Convolutional Neural Network,” Chin. J. Mech. Eng., vol. 30, no. 6, pp. 1357–1368, Nov. 2017.
  • [7] R. Mythily and W. Aisha Banu, “Feature Selection for Optimization Algorithms: Literature Survey,” J. Eng. Appl. Sci., vol. 12, no.1, pp. 5735-5739, 2017.
  • [8] B. Ji, X. Lu, G. Sun, W. Zhang, J. Li, Y. Xiao, “Bio-inspired feature selection: An improved binary particle swarm optimization approach,” IEEE Access, vol. 8, pp. 85989-86002, May 2020.
  • [9] J. Li, H. Kang, G. Sun, T. Feng, W. Li, W. Zhang, B. Ji, “IBDA: improved binary dragonfly algorithm with evolutionary population dynamics and adaptive crossover for feature selection,” IEEE Access, vol. 8, pp. 108032-108051, Jun. 2020.
  • [10] C. Y. Lee, T. A. Le, Y. T. Lin, “A Feature Selection Approach Hybrid Grey Wolf and Heap-Based Optimizer Applied in Bearing Fault Diagnosis,” IEEE Access, vol. 10, pp. 56691-56705, May 2022.
  • [11] C. Y. Lee and T. A. Le, “An enhanced binary particle swarm optimization for optimal feature selection in bearing fault diagnosis of electrical machines,” IEEE Access, vol. 9, pp. 102671-102686, Jul. 2021.
  • [12] Z. Huang, C. Yang, X. Zhou, T. Huang, “A hybrid feature selection method based on binary state transition algorithm and ReliefF,” IEEE J. Biomed. Health Inform., vol. 23, no.5, pp. 1888-1898, Sep. 2018.
  • [13] T. Zhong, S. Zhang, G. Cai, Y. Li, B. Yang and Y. Chen, “Power Quality Disturbance Recognition Based on Multiresolution S-Transform and Decision Tree,” IEEE Access, vol. 7, pp. 88380-88392, Jun. 2018.
  • [14] M. V. Chilukuri and P. K. Dash, “Multiresolution S-transform-based fuzzy recognition system for power quality events,” IEEE Trans. Power Deliv., vol. 19, pp. 323-330, Jan. 2005.
  • [15] Mitchell, M., “Genetic algorithms” In Encyclopedia of Computer Science, pp. 747-748, Jan. 2003.
  • [16] Y. J. Gong, J. J. Li, Y. Zhou, Y. Li, H. S. H. Chung, Y. H. Shi, J. Zhang, “Genetic learning particle swarm optimization,” IEEE Trans. Cybern.,” vol. 46, no. 10, pp. 2277-2290, Sep. 2016.
  • [17] P. Ignaciuk and Ł. Wieczorek, “Continuous genetic algorithms in the optimization of logistic networks: Applicability assessment and tuning,” Applied Sciences, vol. 10, no. 21, p. 7851, Nov. 2021.
  • [18] L. Haldurai, T. Madhubala, R. Rajalakshmi, “A Study on Genetic Algorithm and its Applications,” IOSR J. Comput. Eng., vol. 4, no. 10, pp. 139-143, Oct. 2016.
  • [19] V. Singh, P. Gangsar, R. Porwal, A. Atulkar, “Artificial intelligence application in fault diagnostics of rotating industrial machines: a state-of-the-art review,” J. Intell. Manuf., pp. 1-30, Nov. 2021.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-872e8cfe-e237-4634-b121-da7fed73c686
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.