PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Low Velocity Impact Behaviour of Aramid and UHMWPE Composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Właściwości kompozytów aramidowych i z polietylenu o super wysokim ciężarze cząsteczkowym poddanych udarom o małej prędkości
Języki publikacji
EN
Abstrakty
EN
The most popular method to produce composites for ballistic applications is to use aramid and ultra high molecular weight polyethylene (UHMWPE) fibers as reinforcement materials in different matrices. The composite materials used in this type of application, especially those used as armoring materials for explosions, are subjected to a very high level of energy. In this study, the effect of the reinforcement material type and cross-plied condition of reinforcement were examined using high-level impact tests. The impact tests were performed at low speed but high energy, and thus the behaviour of the composite materials that were exposed to high-level impact energy could be examined. According to the results, the UD aramid composite produced the best results with respect to high-level impact tests. In addition, mass optimisation could be achieved without the loss of the high-level impact energy by preparing a hybrid composite with UD UHMWPE and UD aramid fibers.
PL
Powszechną metodą produkcji kompozytów dla zastosowań balistycznych jest użycie jako wzmocnienia włókien aramidowych oraz włókien polietylenowych o super wysokim ciężarze cząsteczkowym i różnych materiałach matrycy. Materiały kompozytowe stosowane w tego typu rozwiązaniach, specjalnie te stosowane jako materiał wzmacniający w przypadku eksplozji są poddawane testom o bardzo wysokim poziomie energii. W przedstawionej pracy badano efekty zastosowania różnego typu materiałów wzmacniających i ich konfiguracji w strukturze. Badania prowadzono stosując testy udarowe o bardzo wysokiej energii lecz małej prędkości udaru. Dzięki temu można było sprawdzić zachowanie różnych zastosowanych materiałów. W efekcie stwierdzono, że najlepsze wyniki uzyskuje się używając włókna aramidowe. Dodatkowo można było przeprowadzić optymalizacje masy poprzez przygotowanie kompozytów hybrydowych.
Rocznik
Strony
97--105
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
  • Department of Textile Engineering, Faculty of Engineering & Architecture, University of Uludag, Bursa, Turkey
autor
  • Department of Fiber and Polymer Engineering, Faculty of Natural Sciences, Architecture and Engineering, Bursa Technical University, Bursa, Turkey
Bibliografia
  • 1. Abrate S. Impact on laminated composite materials. ASME Appl. Mech. Rev. 1991; 44(2): 155-90.
  • 2. Abrate S. Impact on laminated composites: recent advances. ASME App.l Mech. Rev. 1994; 47(11): 517-44.
  • 3. Wu E, Liau J. Impact of unstitched and stitched laminates by line loading. J. Composite Materials 1994; 28(17): 1640-58.
  • 4. Wu E, Wang J. Behavior of stitched laminates under in-plane tensile and transverse impact loading. J. Composite Materials 1995; 29(11): 2254-79.
  • 5. Wu E, Chang LC. Loading rate effect on woven glass laminated plates by penetration force. J. Composite Materials 1998; 32(8): 702-721.
  • 6. Liu D. Impact-induced delamination – a view of bending stiffness mismatching. J. Composite Materials 1988; 22: 674-692.
  • 7. Wu E, Shyu K. Response of composite laminates to contact loads and relationship to low-velocity impact. J. Composite Materials 1993; 27: 1443-64.
  • 8. Evans RE, Masters JE. A new generation of epoxy composites for primary structural applications: materials and mechanics. ASTM 1985 STP 876 413-436.
  • 9. Masters JE. Correlation of impact and delamination resistance in interleafed laminates. In: 6th ICCM/2th ICCM, London, 3, 1987.
  • 10. Mouritz AP, Leong KH, Herszberg I. A review of the effect of stitching on in-plane mechanical properties of fiber reinforced polymer composites. Composites 1997; 28A: 979-991.
  • 11. Freitas G, Magee C, Dardzinski P, Fusco T. Fiber insertion process for improved damage tolerance in aircraft laminates. Journal of Advanced Materials 1994; 36.
  • 12. Cantwell WJ, Morton J. The impact resistance of composite materials – a review. Composites 1991; 22(5): 347-62.
  • 13. Virostek SP, Dual J, Goldsmith W. Direct force measurement in normal and oblique impact of plates by projectiles. Int. J. Impact Eng. 1987; 6: 247-69.
  • 14. Delfosse D, Pageau G, Bennett R, Poursartip A. Instrumented impact testing at high velocities. J. Composites Technol. Res. 1993; 15(1): 38-45.
  • 15. Zuoguang Z, Huancheng S. Hybrid fiber composites (in Chinese). Beijing University of Aeronautics and Astronautics Press, 1988.
  • 16. Karahan M. Comparison of Ballistic Performance and Energy Absorption Capabilities of Woven and Unidirectional Aramid Fabrics. Textile Research Journal 2008; 78(8):718-730.
  • 17. Karahan M, Kus A, Eren R. An Investigation into Ballistic Performance and Energy Absorption Capabilities of Woven Aramid Fabrics. International Journal of Impact Engineering 2008; 35, 6: 499–510.
  • 18. Karahan M, Karahan N. Effect of Weaving Structure and Hybridization on the LowVelocity Impact Behavior of Woven Carbon-Epoxy Composites. Fibres & Textiles in Eastern Europe 2014; 22, 3(105): 19-25.
  • 19. Charrier JM. Polymeric Materials and Processing. Ed. Hanser, New York, USA, p.63, 1990.
  • 20. Yıldırım K, Ozcagatay U, Kostem AM, Guçer S. Analytical method for determination PE types, 12. Tekstil Teknolojisinde ve Kimyasındaki Son Gelişmeler Sempozyumu, TMMOB-Chambers of chemical Engineers, Bursa, 6-8 May, 2009.
  • 21. Aslan Z, Karakuzu R, Sayman O. Dynamic Characteristics Of Laminated Woven EGlass-Epoxy Composite Plates Subjected To Low Velocity Heavy Mass Impact. J. Compos. Mater. 2002; 36 (21): 2421-2442.
  • 22. Karahan M, Ulcay Y, Eren R, Karahan N, Kaynak G. Investigation into the Tensile Properties of Stitched and Unstitched Woven Aramid/Vinyl Ester Composites. Textile Research Journal 2010; 80, 10: 880–891.
  • 23. Karahan M, Ulcay Y, Karahan N, Kus A. Influence of Stitching Parameters on Tensile Strength of Aramid/Vinyl Ester Composites. Materials Science (Medziagotyra) 2013; 19(1): 67-72.
  • 24. Mittal RK, Jafri MS. Influence of fibre content and impactor parameters on transverse impact response of uniaxially reinforced composite plates. Composites 1995; 26 (12): 877.
  • 25. Flanagan MP, Zikry MA, Wall JW, El-Shiekh A. An Experimental Investigation of High Velocity Impact and Penetration Failure Modes in Textile Composites. Journal of Composite Materials 1999; 33(12): 1080-1103.
  • 26. Padaki NV, Alagirusamy R, Deopura BL, Sugun BS, Fangueiro R. Low velocity impcat behaviour of textile reinforced composites. Indian Journal of Fiber&Textile Research 2008; 33: 189-202.
  • 27. Karahan M, Karahan N. Influence of weaving structure and hybridization on the tensile properties of woven carbon-epoxy composites. Journal of Reinforced Plastics and Composites 2014; 33(2): 212–222.
  • 28. David-West OS, Nash DH, Banks WM. An experimental study of the damage accumulation in balanced CFRP laminates due to repeated impact. Composite Structures 2008; 83: 247-258.
  • 29. Karahan M, Gul H, Ivens J, Karahan N. Low velocity impact characteristic of 3D integrated core sandwich composites. Textile Research Journal 2012; 82(9): 845–862.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87231961-c670-4c76-a4a8-3f0caf834dd1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.