PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Measurement Methods for Flux Residue Quantity after Controlled Atmosphere Brazing of Aluminum Coolers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Controlled Atmosphere Brazing (CAB) process together with NOCOLOKr flux is associated with the occurrence of potassium fluoroaluminate residue inside the cooler. Excess of this flux residue is known to cause gelation of the coolant, which deteriorates the efficiency of the cooler. The flux residue amount is most often measured via Atomic Absorption Spectroscopy (AAS), in accordance with DIN ISO 9964-3. This is a time-consuming measurement that requires the use of specialized equipment and costly solvents. The following article presents two innovative methods for flux residue measurement after CAB process. They include Scanning Electron Microscopy (SEM) with Energy-Dispersive X-ray Spectroscopy (EDS) and Reflected Light Microscopy (RLM) with Differential Interference Contrast (DIC) module. The accuracy of these methods has been compared to the reference AAS method to evaluate their potential as alternative, less expensive, and quicker measurement methods for determining the quantity of flux residue.
Twórcy
  • Poznan University of Technology, Faculty of Mechanical Engineering; MAHLE Behr Ostrów Wielkopolski, ul. Wodna 15; 63-400 Ostrów Wielkopolski, Poland
autor
  • Poznan University of Technology, Faculty of Mechanical Engineering, Poland
  • Poznan University of Technology, Faculty of Mechanical Engineering, Poland
  • Poznan University of Technology, Faculty of Materials Engineering and Technical Physics, Poland
Bibliografia
  • Aluminium Brazing News. (2011). Knowledge & Technology, Post-Braze Flux Residue Properties. www.aluminium-brazing.com/2011/03/16/post-braze-fluxresidue-properties-2/. [Accessed: 09-May-2023]
  • Frøseth, A.G., Høier, R., Derlet, P., Andersen, S., & Marioara C. (2003). Bonding in MgSi and Al-MgSi compounds relevant to Al-Mg-Si alloys. Physical Review B, 67(22), 224106. DOI: 10.1103/PhysRevB.67.224106.
  • Gao, Z., Qin, Z., &Lu, Q. (2022). Controlled Atmosphere Brazing of 3003 Aluminum Alloy Using LowMelting-Point Filler Metal Fabricated by Melt-Spinning Technology. Materials, 15(17), 6080, MDPI. DOI: 10.3390/ma15176080.
  • Hawksworth, D.K., (2013). Fluxless brazing of aluminium. Advances in brazing, Woodhead publishing, 566-585. DOI: 10.1533/9780857096500.3.566.
  • Klett, J., Bongratz, B., Viebranz, V. F., Kramer, D., Hao, C., Maier, H. J., & Hassel, T. (2022). Investigations into Flux-Free Plasma Brazing of Aluminum in a Local XHV-Atmosphere. Materials, 15(23). DOI: 10.3390/ma15238292.
  • Kneba, Z. (2006). Model of a plate cooler working in the cooling system of a car internal combustion engine. Automotive Archive (in Polish), pp. 373-385.
  • Lacaze, J., Tierce, S., Lafont, M-C., Thebault, Y., Pébère, N., Mankowski, G., Blanc, C., Robidou, H., Vaumousse, D., & Daloz, D. (2005). Study of the microstructure resulting from brazed aluminium materials used in heat exchangers. Materials Science and Engineering: A, 413, pp. 317-321. DOI: 10.1016/j.msea.2005.08.187.
  • Li, Y.J. , & Arnberg, L. (2003). Evolution of eutectic intermetallic particles in DC-cast AA3003 alloy during heating and homogenization. Materials science and engineering: A, 347(1-2), pp. 130-135. DOI: 10.1016/S1359-6454(03)00160-5.
  • Mirski, Z., & Pabian, J. (2017). Modern trends in the production of brazed heat exchangers for the automotive industry. Welding Review (In Pomish), 89.
  • NOCOLOK® Aluminium brazing webinar. (2021). Solvay Fluor. www.aluminium-brazing.com/2021/02/04/nocolok-aluminium-brazing-webinar-successfuland-well-received. [Accessed: 12-Feb-2023]
  • NOCOLOK Encyclopedia. (2013). Solvay Special Chemicals. www.aluminium-brazing.com/sponsor/nocolok/Files/PDFs/NOCOLOK-Encyclopedia-2013.pdf. [Accessed: 09-May-2023]
  • Ritgen, U. (2023). Atomic Absorption Spectroscopy (AAS). Analytical Chemistry I, Springer Berlin Heidelberg, pp. 247-253. DOI: 10.1007/978-3-662-66336-3_21.
  • Rusanovsky, M., Beeri, O., & Oren, G., (2022). An endto-end computer vision methodology for quantitative metallography. Scientific Reports, 12(1), 4776. DOI: 10.1038/s41598-022-08651-w.
  • Scott, D.A., & Schwab, R. (2019). Principles and Practice of Metallography. Metallography in Archaeology and Art, 19-68. DOI: 10.1007/978-3-030-11265-3_3.
  • Shribak, M., & Inoué S. (2006). Orientation-independent differential interference contrast microscopy. Applied Optics, 45(3), 460–469. DOI: 10.1364/AO.45.000460.
  • The Morphology and Structure of Post-Braze Flux Residues (2011). www.aluminium-brazing.com/sponsor/nocolok/Files/PDFs/Morphology_Paper.pdf. [Accessed: 09-May–2023]
  • Welz, B, Helmut, B-R., Florek, S., & Heitmann, U. (2005). High-resolution continuum source AAS: The better way to do atomic absorption spectrometry. John Wiley & Sons. DOI: 10.1021/ja0597395.
  • Wojdat, T., Winnicki, M., Mirski, Z., & Żuk, A. (2019). An innovative method of applying fluxes using the low-pressure cold gas spraying method. Welding Technology Review, 91(10), 17-24. DOI: 10.26628/wtr.v91i10.1052.
  • Wu, G., & Dash, K. (2019). Oxidation studies of Al alloys: part II Al-Mg alloy. Corrosion Science, 155, 97-108. DOI: 10.1016/j.corsci.2019.04.018.
  • Wu, Y., Yu, CN., & Sekulic, D.P. (2021). Si diffusion across the liquid/solid interface of capillary driven (Al.-Si)-KxAlyFz micro-layers. Journal of Materials Science, 56, 768107697. DOI: 10.1007/s10853-020-05689-x.
  • Zhao, H., & Woods, R. (2013). Controlled atmosphere brazing of aluminum, in Advances in brazing, Woodhead Publishing, pp. 280-323e. DOI: 10.1533/9780 857096500.2.280.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-871d1708-9d18-4962-8a54-8aa746f4ab28
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.