Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
On Sarnak’s conjecture
Języki publikacji
Abstrakty
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
179--196
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
autor
- Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika
Bibliografia
- [1] E. H. El Abdalaoui, J. Kułaga-Przymus, M. Lemańczyk, T. de la Rue, The Chowla and the Sarnak conjectures from ergodic theory point of view, Discrete Contin. Dyn. Syst. 37 (2017), 2899–2944.
- [2] E. H. El Abdalaoui, J. Kułaga-Przymus, M. Lemańczyk, T. de la Rue, Möbius disjointness for models of an ergodic system and beyond, Israel J. Math. 228 (2018), 707–751.
- [3] A. S. Besicovitch, On the density of certain sequences of integers, Math. Ann. 110 (1935), 336–341.
- [4] E. Bessel-Hagen, Zahlentheorie, Teubner, Leipzig 1929.
- [5] J. Bourgain, P. Sarnak, T. Ziegler, Disjointness of Möbius from horocycle flows, t. 28, Springer, New York 2013.
- [6] S. Chowla, On abundant numbers, J. Indian Math. Soc., New Ser. 1 (1934), 41–44.
- [7] S. Chowla, The Riemann hypothesis and Hilbert’s tenth problem, Mathematics and Its Applications, t. 4, Gordon and Breach Science Publishers, New York 1965.
- [8] A. Cobham, Uniform tag sequences, Math. Systems Feory 6 (1972), 164–192.
- [9] H. Davenport, Über numeri abundantes, Sitzungsber. Preuss. Akad. Wiss. (1933), 830–837.
- [10] H. Davenport, P. Erdős, On sequences of positive integers, Acta Arith. 2 (1936), 147–151.
- [11] M. Denker, C. Grillenberger, K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes in Math., t. 527, Springer, New York 1976.
- [12] T. Downarowicz, Entropy in Dynamical Systems, New Mathematical Monographs, t. 18, Cambridge University Press, Cambridge 2011.
- [13] P. Erdős, On the density of the abundant numbers, J. London Math. Soc. 9 (1934), 278–282.
- [14] S. Ferenczi, J. Kułaga-Przymus, M. Lemańczyk, Sarnak’s conjecture, what’s new, [w:] Ergodic theory and dynamical systems in their interactions with arithmetics and combinatorics (S. Ferenczi, J. Kułaga-Przymus, M. Lemańczyk, red.), Lecture Notes in Math., t. 2213, Springer, Cham, 163–235.
- [15] N. Frantzikinakis, The structure of strongly stationary systems, J. Anal. Math. 93 (2004), 359–388.
- [16] N. Frantzikinakis, B. Host, The logarithmic Sarnak conjecture for ergodic weights, Ann. of Math. 187 (2018), 869–931.
- [17] A. Gomilko, D. Kwietniak, M. Lemańczyk, Sarnak’s conjecture implies the Chowla conjecture along a subsequence, [w:] Ergodic theory and dynamical systems in their interactions with arithmetics and combinatorics (S. Ferenczi, J. Kułaga-Przymus, M. Lemańczyk, red.), Lecture Notes in Math., t. 2213, Springer, Cham, 237–247.
- [18] A. Gomilko, M. Lemańczyk, T. de la Rue, Möbius orthogonality in density for zero entropy dynamical systems, Pure and Applied Functional Analysis 5 (2020), 1357–1376.
- [19] B. Green, T. Tao, The Möbius function is strongly orthogonal to nilsequences, Ann. of Math. 175 (2012), nr 2, 541–566.
- [20] R. R. Hall, Sets of multiples, Cambridge Tracts in Math., t. 118, Cambridge University Press, Cambridge 1996.
- [21] W. Huang, Z. Wang, X. Ye, Measure complexity and Möbius disjointness, Adv. Math. 347 (2019), 827–858.
- [22] W. Huang, Z. Wang, G. Zhang, Möbius disjointness for topological models of ergodic systems with discrete spectrum, J. Modern Dynamics 14 (2019), 277–290.
- [23] A. Kanigowski, M. Lemańczyk, M. Radziwiłł, Rigidity in dynamics and Möbius disjointness, ukaże się w Fundamenta Mathematicae.
- [24] K. Matomäki, M. Radziwiłł, Multiplicative functions in short intervals, Ann. of Math. 183 (2016), nr 2, 1015–1056.
- [25] K. Matomäki, M. Radziwiłł, T. Tao, An averaged form of Chowla’s conjecture, Algebra Number Theory 9 (2015), 2167–2196.
- [26] K. Matomäki, M. Radziwiłł, T. Tao, J. Teräväinen, T. Ziegler, Higher uniformity of bounded multiplicative functions in short intervals on average, preprint.
- [27] C. Müllner, Automatic sequences fulfill the Sarnak conjecture, Duke Math. J. 166 (2017), 3219–3290.
- [28] M. Queffélec, Substitution dynamical systems. Spectral analysis, wyd. 2, Lecture Notes in Math., t. 1294, Springer, Dordrecht 2010.
- [29] O. Ramaré, Chowla’s conjecture: from the Liouville function to the Möbius function, [w:] Ergodic theory and dynamical systems in their interactions with arithmetics and combinatorics (S. Ferenczi, J. Kułaga-Przymus, M. Lemańczyk, red.), Lecture Notes in Math., t. 2213, Springer, Cham, 317–323.
- [30] W. Rudin, Functional analysis, wyd. 2, McGraw-Hill Inc., New York 1991.
- [31] P. Sarnak, Free lectures on the Möbius function, randomness and dynamics, dostępne pod adresem http://publications.ias.edu/sarnak/paper/512 (dostęp: 2020-10-22).
- [32] T. Tao, The Chowla conjecture and the Sarnak conjecture, dostępne pod adresem https://terrytao.wordpress.com/2012/10/14/the-chowla-conjecture-and-the-sarnak-conjecture (dostęp: 2020-10-22).
- [33] T. Tao, The logarithmically averaged Chowla and Elliot conjectures for two-point correlations, Forum Math. Pi 4 E8 (2016).
- [34] T. Tao, Equivalence of the logarithmically averaged Chowla and Sarnak conjectures, [w:] Number theory – diophantine problems, uniform distribution and applications (C. Elsholtz, P. Grabner, red.), Springer, Cham 2017, 391–421.
- [35] T. Tao, The logarithmically averaged and non-logarithmically averaged Chowla conjectures, dostępne pod adresem https://terrytao.wordpress.com/2017/10/20/the-logarithmically-averaged-and-non-logarithmically-averaged-chowla-conjectures/ (dostęp: 2020-10-22).
- [36] T. Tao, J. Teräväinen, Odd order cases of the logarithmically averaged Chowla conjecture, J. Féor. Nombres Bordeaux 30 (2018), 997–1015.
- [37] T. Tao, J. Teräväinen, Fe structure of logarithmically averaged correlations of multiplicative functions, with applications to the Chowla and Elliot conjectures, Duke Math. J. 168 (2019), 1977–2027.
- [38] Z. Wang, Möbius disjointness for analytic skew products, Invent. Math. 209, 175–196.
Uwagi
PL
Opracowane ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-871b0cfb-fc05-48ac-8856-19f21eb4f31b