Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
ZnO-SnO2 nanocomposite was prepared by the sol-gel method. The as-prepared nanocomposite was characterized by X-ray diffraction (XRD), scanning electron micrograph (SEM-EDX), FTIR and UV-Visible spectrometer analysis techniques. The average particle size of nanocomposite was calculated from the XRD study. The average particle size of the prepared nanocomposite was 22 nm. According to the UV-Visible spectrum, the band gap value of 5.06 eV was obtained for the ZnO-SnO2nanocomposite. From the analysis techniques it was found that the metal oxides of ZnO-SnO2 mainly consist of ZnO and SnO2 metal oxides. The antibacterial and antifungal activities of the ZnO-SnO2nanocomposite were studied against Staphylococcus aureus (ATCC25923), Listeria monocytogenes (ATCC 11994)(Gram-positive), Salmonella typhi (ATCC14028), Escherichia coli (ATCC 25922)Gram-negative), Candida albicans (ATCC10231), and Aspergillus niger (ATCC 16404) (fungi)by two methods through the turbidity method or reading optical density and inhibition zone, which were carried out in the absence of irradiation. We observed an effective antibacterial and antifungal activity of the ZnO-SnO2 nanocomposite against bacteria and fungi.
Słowa kluczowe
Rocznik
Tom
Strony
754--766
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
- Department of Chemistry, Faculty of Science and Health, Koya University, Daniel Mitterrand Boulevard, Koya KOY45 AB64, Kurdistan Region - Iraq
autor
- Department of Chemistry, Faculty of Science and Health, Koya University, Daniel Mitterrand Boulevard, Koya KOY45 AB64, Kurdistan Region - Iraq
autor
- Department of Microbiology, Faculty of Science and Health, Koya University, Daniel Mitterrand Boulevard, Koya KOY45 AB64, Kurdistan Region - Iraq
Bibliografia
- ADAMS H.R., 2001, Veterinary pharmacology and therapeutics, 8thEdn, Blackwell publishing professional, U.S.A.
- ALBRECHT M.A., EVANS C. W., RASTON C. L., 2006, Green chemistry and the health implications of nanoparticles. Green Chemistry, 8(5), 417-32.
- DIALLO M.S., SAVAGE N., 2005, Nanoparticles and water quality. J Nanopart Res, 7(4-5), 325-330.
- GRABLEYS., THIERICKE R., 1999, Drug Discovery from Nature, Springer Germany, page 9.
- GRATZEL M.,2001, Photoelectrochemical cells, Nature (414), 338–344.
- HAJIPOUR M.J., FROMM K.M., ASHKARRAN A.A., ABERASTURI D.J., LARRAMENDI I.R., ROJO T., SERPOOSHAN V., PARAK W.J., MAHMOODI M., 2013, Antibacterial properties of nanoparticles. Biotechnol, 30(10), 499-511.
- ISSA M., NAHHLA ., SHEHATA M., ZOURAB., FAWZI S., KODEH., ABDELRAOUF A., ELMANAMA., MOHAMED., ISABELLE G., FLORENCE B., 2013, Nano-structured zinc oxide–cotton fibers: synthesis, characterization and applications, J Mater Sci: Mater Electron, 24, 3970–3975. DOI 10.1007/s10854-013-1349-1.
- KURZ K.A., BRAKECHA J., PUETZ., AEGERTER M.A., 2006,Strategies for novel transparent conducting sol–gel oxide coatings, Thin Solid Films, 502, pp. 212-218.
- LIMTHONGKUL P., WANGH., CHIANG Y.M., 2011, Nanocomposite Li-ion Battery Anodes Produced by the Partial Reduction of Mixed Oxides, Chem. Mater, 13(7), 2397–2402.
- MASCARETTIM O.A., 2003, Bacteria versus antibacterial agents: an integrated approach. Amer Society for Microbiology, U.S.A.
- NAGARAJAN P, RAJAGOPALAN V., 2008, Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. J. Sci. Technol. Adv. Mater, 9(3), 035004.
- NASRIN T., MOHAMMAD R.N., ELAHE B.Z., 2011, Enhanced antibacterial performance of hybrid semiconductor nanomaterials: ZnO/SnO2 nanocomposite thin films. Applied Surface Science, 258,547– 555. doi:10.1016/j.apsusc.2011.08.070.
- RODRIGUEZ I., PETRANOVSKII V., RODRIGUEZ F.G., 2007, Exchange and reduction of Cu2+ ions in clinoptilolite. J Colloid Interface Sci, 316(2), 877-886. SHANNON M.A., BOHN P.W., ELIMELECH M., GEORGIADI J.G., MARINAS B.J., MAYES AM., 2008, Science and technologyfor water purification in the coming decades. Nature,452(7185), 301-10.doi: 10.1038/nature06599.
- SIN N.D., MAMAT M.H., MALEK M.F., RUSOP M., 2014, Fabrication of nanocubicZnO/SnO2 film-based humidity sensor with high sensitivity by ultrasonic-assisted solution growth method at different Zn:Sn precursor ratios. ApplNanosci, 4,7, 829–838. DOI 10.1007/s13204-013-0262-5.
- SOJKA L.J., LEWARTOWSKA J., KUDZIN M., JESIONOWSKI T., SIWINSKA S.K., KRYSZTAFKIEWICZ A., 2008, Modification of Textile Materials with Micro-and Nano-Structural Metal Oxides. FIBRES & TEXTILES. Eastern Europe January, 16, 5 (70), pp. 112-116.
- TIEKUN J., JUNWEI Z., FANG F., ZHAO D., WEIMIN W., ZHENGYI F., FANCHENG M., 2014, Synthesis, Characterization, and Photocatalytic Activity of Zn-Doped SnO2/Zn2SnO4 Coupled Nanocomposites. International Journal of Photoenergy, page 7. doi:10.1155/2014/197824.
- US ENVIRONMENTAL PROTECTION AGENCY., 2006,National Primary Drinking Water Regulations: Stage 2 Disinfectants and Disinfection Byproducts Rule; Final Rule. Federal Register, 71(c), 387- 493.
- ZHANG L., JIANG Y., DING., POVEY M., YORKD., 2007, Investigation into the antibacterial behavior of suspensions of ZnO nanoparticles (ZnOnanofluids). J. Nanopart. Res, 9, 479-489.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-870dddfe-4388-4948-906c-2e7547d20311