PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of mixed collectors on quartz-feldspar by fluorine-free flotation separation and their interaction mechanism : a review

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Quartz and feldspar are usually exist in symbiosis in nature, and they are difficult to be separated effectively by conventional physical methods owing to their similarities in crystal structures and surface characteristics. Flotation is the most resultful method, and especially, flotation with hydrofluoric acid (HF) is the most efficient way. Because HF may cause serious environmental and health problems, the effective and environmentally friendly separation of quartz and feldspar remains a formidable challenge. The crystal structure, surface broken bonds, surface energy, and solid–liquid interface properties of quartz and feldspar are investigated in this paper. In particular, some types of mixed cationic/anion collectors and their interaction mechanism on the quartz and feldspar surfaces with acidic, alkaline, and neutral media in the absence of fluorine are discussed, and the grade and scheme of quartz and feldspar for the practical application are illustrated. This review proposes concrete research approaches and provides perspectives for the advanced processing of quartz and feldspar in an environmentally friendly and economical way.
Rocznik
Strony
139--156
Opis fizyczny
Bibliogr. 112 poz., rys. kolor.
Twórcy
autor
  • School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070,PR China
  • Bengbu Design and Research Institute for Glass Industry, Bengbu 233018, PR China
  • State Key Laboratory of Float Glass New Technology, Bengbu 233018, PR China
autor
  • School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070,PR China
autor
  • Bengbu Design and Research Institute for Glass Industry, Bengbu 233018, PR China
autor
  • Bengbu Design and Research Institute for Glass Industry, Bengbu 233018, PR China
autor
  • School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070,PR China
autor
  • Bengbu Design and Research Institute for Glass Industry, Bengbu 233018, PR China
  • State Key Laboratory of Float Glass New Technology, Bengbu 233018, PR China
autor
  • School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070,PR China
Bibliografia
  • ABAKA-WOOD G.B., ADDAI-MENSAH J., SKINNER W., 2017. A study of flotation characteristics of monazite, hematite, and quartz using anionic collectors. International Journal of Mineral Processing. 158., 55–62.
  • ADEAGBO W.A., DOLTSINIS N.L., KLEVAKINA K., RENNER J., 2008. Transport processes at α-quartz-water interfaces: Insights from first-principles molecular dynamics simulations. ChemPhysChem. 9., 994–1002.
  • AHMED M.M., 2010. Effect of comminution on particle shape and surface roughness and their relation to flotation process. International Journal of Mineral Processing. 94., 180–191.
  • ALEXANDROVA L., RAO K.H., FORSBERG K.S.E., GRIGOROV L., PUGH R.J., 2009. Three-phase contact parameters measurements for silica-mixed cationic-anionic surfactant systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 348., 228–233.
  • BANDURA A. V., KUBICKI J.D., SOFO J.O., 2011. Periodic density functional theory study of water adsorption on the α-quartz (101) surface. Journal of Physical Chemistry C. 115., 5756–5766.
  • BAYAT O., ARSLAN V., CEBECI Y., 2006. Combined application of different collectors in the floatation concentration of Turkish feldspars. Minerals Engineering. 19., 98–101.
  • BOILY J.F., ROSSO K.M., 2011. Crystallographic controls on uranyl binding at the quartz/water interface. Physical Chemistry Chemical Physics. 13., 7845–7851.
  • BURAT F., KOKKILIC O., KANGAL O., GURKAN V., CELIK M.S., 2007. Quartz-feldspar separation for the glass and ceramics industries. Minerals and Metallurgical Processing. 24., 75–80.
  • CHAKRABORTY T., HENS A., KULASHRETHA S., CHANDRA M.N., BANERJEE P., 2015. Calculation of diffusion coefficient of long chain molecules using molecular dynamics. Physica E: Low-Dimensional Systems and Nanostructures. 69., 371–377.
  • CHEN Y.W., CAO C., CHENG H.P., 2008. Finding stable α -quartz (0001) surface structures via simulations. Applied Physics Letters. 93., 5-12.
  • CHEN, Y.W., CHENG H.P., 2010. Structure and stability of thin water films on quartz surfaces. Applied Physics Letters. 97., 1–4.
  • CHENG Z., ZHU Y., LI Y., HAN Y., 2019. Flotation and adsorption of quartz with the new collector. 56., 207–216.
  • CRUDWELL F.K., 2016. On the mechanism of the flotation of oxides and silicates. Minerals Engineering. 95., 185–196.
  • CONG J.Y., WANG WQ.,LIN YM., 2018. Flotation Mechanism of Calcium Ion Activation Quartz in System of Sodium Oleate. Non-Metallic Mines. 41., 11–13.
  • DAI Q., TANG J.Y., CHENG Z.B., 1996. Progress in flotation separation of quartz-feldspar. Non-Metallic Mines. 110., 16–19.
  • DE LEEUW N.H., HIGGINS F.M., PARKER S.C., 1999. Modeling the surface structure and stability of α-quartz. Journal of Physical Chemistry B. 103., 1270–1277.
  • DE MESQUITA L.M.S., LINS F.F., TOREM M.L., 2003. Interaction of a hydrophobic bacterium strain in a hematite-quartz flotation system. International Journal of Mineral Processing. 71., 31–44.
  • DEMIR, C., ABRAMOV, A.A., ÇELIK, M.S., 2001. Flotation separation of Na-feldspar from K-feldspar by monovalent salts. Minerals Engineering 14, 733–740.
  • DEMIRA C., BENTLIB I., GULGONULC I., ÇELIKD M.S., 2003. Effects of bivalent salts on the flotation separation of Na-feldspar from K-feldspar. Minerals Engineering. 16., 551–554.
  • DUAN H., LIU W.G., WANG X.Y., LIU W.B., ZHANG X.R., 2019. Effect of secondary amino on the adsorption of N-Dodecylethylenediamine on quartz surface: A molecular dynamics study. Powder Technologh. 351., 46-53.
  • EJTEMAEI M., IRNNAJAD M., GHRABAGHI M., 2012. Role of dissolved mineral species in selective flotation of smithsonite from quartz using oleate as collector. International Journal of Mineral Processing. 114–117., 40–47.
  • El-Salmawy, M.S., Nakahiro, Y., Wakamatsu, T., 1993. The role of alkaline earth cations in flotation separation of quartz from feldspar. Minerals Engineering. 6, 1231–1243.
  • ESSLUR P.R.O., RAO K.H., FORSSBERG K.S.E., 1997. Mixed collector systems in flotation. 51, 67–79.
  • FENG Q., WEN S., ZHAO W., CHEN H., 2018. Interaction mechanism of magnesium ions with cassiterite and quartz surfaces and its response to flotation separation. Separation and Purification Technology. 206., 239–246.
  • FILIPPOV L.O., DUVERGER A., FILIPPOV I.V., KASAINI H., THIRY J., 2012. Selective flotation of silicates and Ca-bearing minerals: The role of non-ionic reagent on cationic flotation. Minerals Engineering. 36–38., 314–323.
  • GAIEDA M.E., GALLALA W., 2015. Benefication of feldspar ore for application in the ceramic industry: Influence of composition on the physical characteristics. Arabian Journal of Chemistry. 8., 186–190.
  • GAO Z., FAN R., RALSTON J., SUN W., HU Y., 2019. Surface broken bonds: An efficient way to assess the surface behaviour of fluorite. Minerals Engineering. 130., 15–23.
  • GUAN F., ZHONG H., LIU G. ZHAO SG., XIA, LY., 2009. Flotation of aluminosilicate minerals using alkylguanidine collectors. Transactions of Nonferrous Metals Society of China (English Edition). 19., 228–234.
  • GULGONUL I., KARAGUZEL C., ÇNAR M., ÇELIK M.S., 2012. Interaction of sodium ions with feldspar surfaces and its effect on the selective separation of Na- and K-feldspars. Mineral Processing and Extractive Metallurgy Review. 33., 233–245.
  • GUO W.D., ZHU Y.M., HAN Y.X., LI Y.J., YUAN S., 2020. Flotation performance and adsorption mechanism of a new collector 2- (carbamoylamino) lauric acid on quartz surface. Minerals Engineering. 153., 106343.
  • HEYES G.W., ALLAN G.C., BRUCKARD W.J., SPARROW G.J., 2012. Review of flotation of feldspar. Transactions of the Institutions of Mining and Metallurgy, Section C: Mineral Processing and Extractive Metallurgy. 121., 72–78.
  • HU X., LIY., SUN H., SONG X., LI Q., CAO X., LI Z., 2010. Effect of divalent cationic ions on the adsorption behavior of zwitterionic surfactant at silica/solution interface. Journal of Physical Chemistry B. 114., 8910–8916.
  • HUANG Z.Q., ZHONG H., WANG S., XIA L.Y., ZHAO G., LIU G.Y., 2014. Gemini trisiloxane sufactant: Synthesis and floation of aluminosilicate minerals. Menerals Engineering. 56., 145-154.
  • HUGGINS M.L., 1922. The crystal structure of quartz. Physical Review. 19., 363–368.
  • JIN J., GAO H., CHEN X., PENG Y., 2016. The separation of kyanite from quartz by flotation at acidic pH. Minerals Engineering. 92., 221–228.
  • KOU J., TAO D., XU G., 2010. A study of adsorption of dodecylamine on quartz surface using quartz crystal microbalance with dissipation. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 368., 75–83.
  • KUBICKI J.D., SOFO J.O., SKELTON A.A., BANDURA A. V., 2012. A new hypothesis for the dissolution mechanism of silicates. Journal of Physical Chemistry C. 116., 17479–17491.
  • KUME G., GALLOTTI M., NUNES G., 2008. Review on anionic/cationic surfactant mixtures. Journal of Surfactants and Detergents. 11., 1–11.
  • LARSEN E., JOHANNESSEN N.E., KOWALCZUK P.B., KLEIV R.A., 2019. Selective flotation of K-feldspar from Na-feldspar in alkaline environment. Minerals Engineering. 142., 105928-105935.
  • LARSEN E., KLEIV R.A., 2016. Flotation of quartz from quartz-feldspar mixtures by the HF method. Minerals Engineering. 98., 49–51.
  • LARSEN E., KLEIV R.A., 2015. Towards a new process for the flotation of quartz. Minerals Engineering. 83., 13–18.
  • LEUTY G.M., TSIGE M., 2010. Structure and dynamics of tetrahalomethane adsorption on (001) surfaces of graphite and α-quartz. Journal of Physical Chemistry B. 114., 13970–13981.
  • LI L., HAO H., YUAN Z., LIU J., 2017. Molecular dynamics simulation of siderite-hematite-quartz flotation with sodium oleate. Applied Surface Science. 419., 557–563.
  • LIN M., LEI S.M., PEI Z.Y., LIU Y., XIA Z., XIE F., 2018. Application of hydrometallurgy techniques in quartz processing and purification: a review. Metallurgical Research & Technology. 115., 303.
  • LIN M., PEI Z.Y., LEI S.M., 2017. Mineralogy and processing of hydrothermal vein quartz from hengche, Hubei province (China). Minerals. 7.,1324-1329.
  • LIU A., FAN P.P., QIAO X.X., LI Z.H., WANG H.F., FAN M.Q., 2020. Synergistic effect of mixed DDA / surfactants collectors on flotation of quartz. Minerals Engineering. 159., 106605.
  • LIU A., FAN J.C., FAN M.Q., 2015. Quantum chemical calculations and molecular dynamics simulations of amine collector adsorption on quartz (0 0 1) surface in the aqueous solution. International Journal of Mineral Processing. 134., 1-10.
  • LIU C.F., MIN F.F., LIU L.Y., CHEN J., 2019. Density Functional Theory Study of Water Molecule Adsorption on the α-Quartz (001) Surface with and without the Presence of Na+, Mg2+, and Ca2+. ACS OMEGA. 4., 12711-12718.
  • LIU J., CHEN W.Y., HAN Y.X., YUAN H.Q., 2013. Study on flotation mechanism of separation of potassium feldspar from quartz with anion and cation mixed collector. Advanced Materials Research. 826., 106–113.
  • LUO X.M., LIN Q.Q., WANG Y.F., TIAN M.J., LAI H., BAI S.J., ZHOU Y.F., 2020. New insights into the activation mechanism of calcium species to quartz : ToF-SIMS and AFM investigation. Minerals Engineering. 153., 106398.
  • MALATI B.M.A., ESTEFAN S.F., 1967. Activation of Quartz By Alkaline Earth. 17.
  • MAO JF.,SUN BQ.,1986. Study on the role of aluminum salt and sodium silicate for the flotation separation of quartz-feldspar. Metal Mine 6,39-43.
  • MOHAMMADI-JAM S., BURNETT D.J., WATERS K.E., 2014. Surface energy of minerals applications to flotation. Minerals Engineering. 66., 112–118.
  • MOON K.S., FUERSTENAU D.W., 2003. Surface crystal chemistry in selective flotation of spodumene (LiAl[SiO3]2) from other aluminosilicates. Mineral Processing. 72., 11-24.
  • MORGANE P.L., GAIGEOT M.P., 2016. Adsorption of Singly Charged Ions at the Hydroxylated (0001) α-Quartz/Water Interface. Journal of Physical Chemistry C. 120., 4866–4880.
  • MOUDGIL B.M., 2005. Calcium activation of silica surfaces. Non-Metallic Mines. 21., 164–168.
  • MURASHOV V.V., 2005. Reconstruction of pristine and hydrolyzed quartz surfaces. J. Phys. Chem. B 109., 4144–4151.
  • NEVSKAIA D.M., GUERRERO-RUIZ A., LOPEZ-GONZALEZ J.D.D., 1998. Adsorption of polyoxyethylenic nonionic and anionic surfactants from aqueous solution: Effects induced by the addition of NaCl and CaCl2. Journal of Colloid and Interface Science. 205., 97–105. NIU Y., SUM C., YIN W., ZHANG X., XU H., 2019. Selective flotation separation of andalusite and quartz and its mechanism.International Journal of Minerals, Metallurgy and Materials. 26.,1059-1065.
  • OZKAN A., UCBEYIAY H., DUZYOL S., 2009. Comparison of stages in oil agglomeration process of quartz with sodium oleate in the presence of Ca (II) and Mg (II) ions. J. Colloid Interface Sci. 329., 81–88.
  • PERETTI R., SERCI A., ZUCCA A., 2012. Electrostatic K-feldspar/Na-feldspar and feldspar/quartz separation: Influence of feldspar composition. Mineral Processing and Extractive Metallurgy Review. 33., 220–231.
  • QIN W.Q., WU J.J., JIAO F., 2017. Mechanism of different particle sizes of quartz activated by metallic ion in butyl xanthate solution. Journal of Central South University. 24., 56–61.
  • RAO K.H., FORSSBERG K.S.E., 1997. Mixed collector systems in flotation. International Journal of Mineral Processing. 51, 67–79.
  • RAI B., SATHIS P., TANWAR J., MOON K.S., FUERSTENAU D.W., 2011. A molecular dynamics study of the interaction of oleate and dodecylammonium chloride surfactants with complex aluminosilicate minerals. Colloid and Interface Science. 2., 510-516.
  • RATH S.S., SAHOO H., DAS B., MISHRA B.K., 2014. Density functional calculations of amines on the (1 0 1) face of quartz. Minerals Engineering. 69., 57–64.
  • SAHOO H., RATH S.S., DAS B., MISHRA B.K., 2016. Flotation of quartz using ionic liquid collectors with different functional groups and varying chain lengths. Minerals Engineering. 95., 107–112.
  • SEKULIC Z., CANIC N., BARTULOVIC Z., DAKOVIC A., 2004. Application of different collectors in the flotation concentration of feldspar, mica and quartz sand. Minerals Engineering. 17., 77–80.
  • SHEHU N., SPAZIANI E., 1999. Separation of feldspar from quartz using EDTA as modifier. Minerals Engineering. 12., 1393–1397.
  • SHRIMALI K., YIN X., WANG X., MILLER J.D., 2017. Fundamental issues on the influence of starch in amine adsorption by quartz. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 522., 642–651.
  • SHU K.Q., XU L.H., WU H.Q., XU Y.B., LUO L.P., YANG J., TANG Z., WANG Z.J., 2020. In-situ adsorption of mixed anionic / cationic collectors in a spodumene ‒ feldspar flotation system : Implications for collector design.Langmuir. 19.,1-33.
  • SKORINA T., ALLANORE A., 2015. Aqueous alteration of potassium-bearing aluminosilicate minerals: From mechanism to processing. Green Chemistry .17., 2123–2136.
  • TIAN J., XU L.H., DENG W., JIANG H., GAO Z., HU Y., 2017. Adsorption mechanism of new mixed anionic/cationic collectors in a spodumene-feldspar flotation system. Chemical Engineering Science. 164., 99–107.
  • TSUCHIYA T., YAMANAKA T., MATSUI M., 2000. Molecular dynamics study of pressure-induced transformation of quartz-type GeO2. Physics and Chemistry of Minerals. 27., 149–155.
  • VEGA L., BRETON J., GIRARDET C., GALATRY L., 1986. Interaction potential and chiral discrimination between an alanine molecule and a quartz surface. The Journal of Chemical Physics. 84., 5171–5180.
  • VIDYADHAR A., RAO K.H., 2007. Adsorption mechanism of mixed cationic/anionic collectors in feldspar-quartz flotation system. Journal of Colloid and Interface Science. 306., 195–204.
  • VIDYADHAR A., RAO K.H., CHERNYSHOVA I.V., PRADIP FORSSBERG K.S.E., 2002. Mechanisms of amine-quartz interaction in the absence and presence of alcohols studied by spectroscopic methods. Journal of Colloid and Interface Science. 256., 59–72.
  • VIDYADHAR A., RAO K.H., CHERNYSHOVA I.V., 2003. Mechanisms of amine-feldspar interaction in the absence and presence of alcohols studied by spectroscopic methods. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 214., 127–142.
  • WANG L., LIU R., HU Y., LIU J., SUN W., 2016. Adsorption behavior of mixed cationic/anionic surfactants and their depression mechanism on the flotation of quartz. Powder Technology. 302., 15–20.
  • WANG L., SUN W., HU Y.H., XU L.H., 2014. Adsorption mechanism of mixed anionic/cationic collectors in Muscovite - Quartz flotation system. Minerals Engineering. 64., 44–50.
  • WANG M., QIAN M.C., SHI X.M., GUO F.F., YAO T., 2013. A Study of the Flotation Separation of Feldspar from Quartz in Acidic Medium. J.of Anhui University of Technology(Natural Science). 12., 210–215.
  • WANG X.Y., LIU W., DUAN H., WANG B., HAN C., WEI D., 2018. The adsorption mechanism of calcium ion on quartz (101) surface: A DFT study. Powder Technology. 329., 158–166.
  • WANG, X.C., ZHANG Q., LI X., YE J., LI L., 2018. Structural and electronic properties of different terminations for quartz (001) surfaces as well as water molecule adsorption on it: A first-principles study. Minerals. 8.,123-129.
  • WANG X., ZHANG Y., LIU T., CAI Z., 2019. Influence of metal ions on muscovite and calcite flotation: With respect to the pre-treatment of vanadium bearing stone coal. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 564., 89–94.
  • WEI B., CHANG Q., BAO C., DAI L., ZHANG G., WU F., 2013. Surface modification of filter medium particles with silane coupling agent KH550. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 434., 276–280.
  • WRIGHT L.B., FREEMAN C.L., WALSH T.R., 2013. Benzene adsorption at the aqueous (0 1 1) α-quartz interface: Is surface flexibility important?. Molecular Simulation. 39., 1093–1102.
  • WRIGHT L.B., WALSH T.R., 2012. First-principles molecular dynamics simulations of NH4+ and CH3COO- adsorption at the aqueous quartz interface. Journal of Chemical Physics .137.,126-137.
  • XIE R.Q., ZHU Y.M., LIU J., WANG X., LI Y.J., 2020. Differential collecting performance of a new complex of decyloxy-propyl- amine and α -bromododecanoic acid on flotation of spodumene and feldspar. Minerals Engineering. 153., 106377.
  • XIE R.Q., ZHU Y.M., LI Y.J., HAN Y.X., 2020a. Flotation behavior and mechanism of a new mixed collector on separation of spodumene from feldspar. Colloids and Surfaces A. 599., 124932.
  • XU L.H., HU Y.H., TIAN J., WU H.Q., YANG Y.H., ZENG X.B., WANG Z., WWANG J.M., 2003. Selective flotation separation of spodumene from feldspar using new mixed anionic/cationic collectors. Minerals Engineering. 89., 84-92.
  • XU L.H., HU Y.H. DONG F., GAO Z.Y., WU H.Q., WANG Z., 2014. Anisotropic adsorption of oleate on diaspore and kaolinite crystals: Implications for their flotation separation. Applied Surface Science .321., 331–338.
  • XU L.H., HU Y.H., TIAN J., WU H.Q., YANG Y.H., ZENG X.B.,WANG Z., WANG J.M., 2016. Selective flotation separation of spodumene from feldspar using new mixed anionic/cationic collectors. Minerals Engineering. 89., 84–92.
  • XU L.H.,TIAN, J., WU H.Q., TIAN J.,LIU J., GAO Z.Y., WANG L., 2016. Surface crystal chemistry of spodumene with different size fractions and implications for flotation. Separation and Purification Technology.,169 , 33–42
  • XU L.H., TIAN J., WU H.Q., DENG W., YANG Y.H., SUN W., GAO Z.Y., HU Y.H., 2017a. New insights into the oleate flotation response of feldspar particles of different sizes: Anisotropic adsorption model. Journal of Colloid and Interface Science. 505., 500–508.
  • XU L.H., IAN J., WU H.Q., LU Z., SUN W., HU Y.H., 2017b. The flotation and adsorption of mixed collectors on oxide and silicate minerals. Advances in Colloid and Interface Science. 250., 1–14.
  • YAN L., YANG Y., JIANG H., ZHANG B., ZHANG H., 2016. The adsorption of methyl methacrylate and vinyl acetate polymers on α-quartz surface: A molecular dynamics study. Chemical Physics Letters. 643., 1–5.
  • YANG Y., MIN Y., LOCOCO J., JUN Y.S., 2014. Effects of Al/Si ordering on feldspar dissolution: Part I. Crystallographic control on the stoichiometry of dissolution reaction. Geochimica et Cosmochimica Acta. 126., 574–594.
  • YANG Z.C, FE.NG Y.L., LI H.R, Wang, DA W., 2014. Effect of Mn (II) on quartz flotation using dodecylamine as collector. Journal of Central South University. 21., 3603–3609.
  • YIN W., WANG D., DRELICH J.W., YANG B., LI D., ZHU Z., 2019. Reverse flotation separation of hematite from quartz assisted with magnetic seeding aggregation. Minerals Engineering. 139., 105873.
  • YUAN Y.R., ZHANG L.Y., GUAN J.F., ZHANG C., WU J.X., 2018. Contribution on fluid inclusion abundance to activation of quartz flotation. Physicochemical Problems of Mineral Processing,15.,253-162.
  • ZAJAC J., CHORRO C., LINDHEIMER M., PARTYKA S., 1997. Thermodynamics of micellization and adsorption of zwitterionic surfactants in aqueous media. Langmuir. 13., 1486–1495.
  • ZDZIENNICKA A., 2010. The wettability of polytetrafluoroethylene and polymethylmethacrylate with regard to interface behaviour of Triton X-165 and short chain alcohol mixtures: I. Critical surface tension of wetting and adhesion work. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 367., 108–114.
  • ZhANG J., WANG W.Q., LIU J., HUANG Y., FENG Q.M., ZHAO H., 2014. Fe(III) as an activator for the flflotation of spodumene, albite, and quartz minerals. Minerals Engineering.61., 16–22.
  • ZHANG R., SOMASUNDARAN P., 2006. Advances in adsorption of surfactants and their mixtures at solid/solution interfaces. Advances in Colloid and Interface Science. 123., 213–229.
  • ZHANG X.F., LU G.W., WEN X.M., YANG H., 2009. Molecular dynamics investigation into the adsorption of oil-water-surfactant mixture on quartz. Applied Surface Science 255, 6493–6498.
  • ZHANG Y., HU Y., SUN N., LIU R., WANG Z., WANG L., SUN W., 2018. Systematic review of feldspar beneficiation and its comprehensive application. Minerals Engineering 128, 141–152.
  • ZHANG Z., FENG Q.M., WANG W.Q., 2012. Adsorption of Dodecyl Amine and Sodium Dodecyl Sulfonate on Feldspar and Quartz. Mines, Non-metallic. 35.,125-132.
  • ZHAO L., LIU W., DUAN H., YANG T., LI Z., ZHOU S., 2018. Sodium carbonate effects on the flotation separation of smithsonite from quartz using N,N′-dilauroyl ethylenediamine dipropionate as a collector. Minerals Engineering. 126., 1–8.
  • ZHENG CH.,WANG M.,QIAN MC., 2015. The Flotation Separation of Feldspar from Quartz in Neutral Medium. Non-Metallic Mines. 38., 7–9.
  • ZHENG R.J., REN Z.J., Gao H.M., CHEN Z.J., Qian Y.P., Li Y., 2018. Effects of crystal chemistry on sodium oleate adsorption on fluorite surface investigated by molecular dynamics simulation. Minerals Engineering. 124., 77–85.
  • ZHU G.L., WANG Y.H., LIU X.W., YU F.S., LU D.F. 2015 .The cleavage and surface properties of wet and dry ground spodumene and their flotation behavior.Applied Surface Science. 357., 333–339.
  • ZHU G.L., Wang, Y.H., Wang, X.M., Yu, F.H., Miller, J.D., 2018. States of coadsorption for oleate and dodecylamine at selected spodumene surfaces. Colloids and surfaces A. 558., 313-321.
  • ZHURAVLEV L.T., 2000. The surface chemistry of amorphous silica. Colloids Surf A:Physicochemical and Engineering Aspects. 173., 1–38.
  • ZHU Y., LUO B., SUN C., LIU J., SUN H., LI Y., HAN Y., 2016. Density functional theory study of α-Bromolauric acid adsorption on the α-quartz (1 0 1) surface. Minerals Engineering. 92., 72–77.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-870a4e0f-1fe5-4de1-9e9a-279c6c72e49b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.