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Abstract. In order to achieve the desired topology we often have to remove material of the 

area considered. This work presents the author's algorithm which can be used in the recon-

struction of the boundary of domain after elimination of a certain amount of material. 

The paper introduces some details about the procedure that allows one to achieve the 

expected shape of a domain. The topological-shape sensitivity method for the Laplace 

equation is used to obtain an optimal topology, whereas numerical methodology utilizes 

the boundary element method. In the conclusion of the paper the example of computation 

is shown. 
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1. Introduction 

Paper [1] presented the theory and numerical experiment that led to achieving 

an optimal shape of domain using the topological derivative and the boundary ele-

ment method. This work is a follow-up of the article [1] and focuses on the analysis 

of an algorithm which describes the rebuilding of a boundary of domain during the 

optimization process. From a numerical point of view, the algorithm of the bound-

ary reconstruction is rather complicated. Taking into account the boundary linear 

elements, one is  required to use double boundary nodes when the boundary condi-

tions are changed. We also have to pay attention to an appropriate sequence of the 

boundary nodes. Namely, the numbering of the nodes on an external boundary 

should be anticlockwise, whereas the numbering of the nodes on an interior bound-

ary must be clockwise. On the other hand, the material is progressively removed by 

putting the holes in correct places of the domain. The topological derivative gives 

the information on the opportunity to create a small hole in the domain of interest. 

Wherever the value of topological derivative is low enough, the material can be 

eliminated. In the paper the topological-shape sensitivity method is used as a pro-
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cedure to calculate the topological derivative taking the total potential energy as 

a cost function [2, 3]. 

In this work, firstly the problem is formulated. Next, the algorithm of rebuilding 

the boundary is presented, then the example is shown. Finally, conclusions are 

expressed. 

2. Formulation of the problem 

The domain  Ω  bounded by contour  Γ = Γ1 ∪  Γ2  is considered. The Laplace 

equation supplemented by the boundary conditions is taken into account [2-5] 
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where  x = (x1, x2) are the spatial coordinates, λ is the thermal conductivity, T (x) 

is the temperature, ∂T (x)/∂n denotes the normal derivative and n = [cosα1, cosα2] 

is the normal outward vector. Tb is the boundary temperature and qb is the boundary 

heat flux. On the holes created via Topological Derivative (DT),  the Neumann 

boundary condition is prescribed, that is, q (x) = 0. In this case the expression for 

the topological derivative is the following 

 ( )TD x T T= ∇ ⋅∇  (2) 

The aim of the work is to find the desired optimal topology of the domain consid-

ered using the iterative procedure which is carried out in the following steps: 

1. Provide the initial domain Ω and the stop criterion. 

2. Solve problem (1) using the BEM. 

3. Calculate DT  at internal points by means of  e.g. (2). 

4. Select the points with the lowest values of DT. 

5. On the selected points create a hole. 

6. Define the new domain Ωi (rebuild the boundary and mesh), where i is the i-th 

iteration. 

7. Repeat the procedure until a given stop criterion is obtained. 

As it was mentioned, problem (1) is solved by means of the BEM [1, 5]. Details 

of this method and the calculation of DT are described in [1-3]. Steps 5 and 6 

will be discussed in the next section. 
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3. Algorithm of rebuilding the boundary 

In this part of our paper we deal with the problem of shape modification of area. 

In each iteration, on the selected points where DT is low enough, the material is 

eliminated by inserting a hole with  the centre point P0 = (x0, y0). It is important to 

mention that the area of holes should be equal to about 2% of the area of the whole 

domain. The boundary of the openings is divided into 6 linear boundary elements 

(see Fig.1). In order to automate the process, it is assumed that the side length of 

a regular hexagon  is approximately equal to the length of the boundary element (ds). 

 

 

        Fig. 1. Hexagonal hole 

Coordinates of the hexagon vertices are the following: 
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where r is a radius of the hole, while 

 3 2h r=  (4) 

For each node formed by the regular hexagon vertices Pi = (xi
P
, yi

P
) , i = 1,2,…6 

the nearest boundary node is searched using the formula 

 ( ) ( )2 2

,    1,2,...,6,   1,2,...,P W P W
i i j i jd x x y y i j n= − + − = =  (5) 

where Wj = (xj
W

, yj
W

) and n are the coordinates and the number of the boundary 

nodes, respectively. Next, the following criterion is considered (the so-called 

“contact criterion”) 

 0.75i sd d≤  (6) 
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If criterion (6) is satisfied, then it is assumed that i-th the hexagon node keeps in 

contact with j-th the boundary node, ds means the length of the boundary element. 

Information about number of nodes which satisfy criterion (6) or not is stored 

in two separate matrices: CM (contact matrix) or NCM (not contact matrix). 

The matrix CM also includes knowledge about the distance of nodes and the type 

of boundary conditions in these nodes. For example, in Figure 2 nodes 2 and 34, 3 

and 35 satisfy criterion (6) and 1 and 33, 4 and 36 do not satisfy it. Nodes 33, 1, 6, 

5, 4 and 36 must be spliced to create the new outline of the domain. 

 

 

Fig. 2.  

If the matrix CM is empty (neither of the nodes are in contact)  then we can 

create a new hole prescribing the Neumann boundary condition q = 0 on its 

boundary (see Fig. 3). Now, we discuss some cases concerning connecting the 

hexagon nodes with the boundary ones. An analysis is conducted taking into 

account the successive nodes of the hexagon. The first case is shown in Figure 2. 

An increase is noticed in the numbering of boundary nodes and an increase in the 

numbering of hole nodes.The contact criterion is satisfied for 2 and 34, 3 and 35 

nodes. In Figure 4, the numbering of hole nodes is increasing while the numbering 

of  the boundary ones  is decreasing. The nodes 5 and 3, 6 and 2 fulfill criterion (6). 

 

   

 Fig. 3. Fig. 4.  

Further considerations involve doing a sorting of the nodes which satisfy the 

contact criterion. The rows of the matrix are sorted taking into account the number-

ing of the boundary nodes. It is worth noting that the first column contains 

the hexagon's node number and the second one the node number of the boundary. 

For instance, two columns of the CM before sorting are the following (see Fig. 4). 
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5 3

6 2

 
 
 

 (7) 

and after sorting 

 
6 2

5 3

 
 
 

 (8) 

Sometimes to obtain the correct sorting we need to introduce the so-called substi-

tute numbering. It is done when both the first and the last node of the hexagon sat-

isfy criterion (6). To the nodes numbered from 1, we should add 10 (this means 

that we replace 1 by 11, 2 by 12, etc.). 

 

     

 Fig. 5. Fig. 6.  

For example, taking Figure 5 the contact matrix is the following: 

 

5 3

6 2

1 37

2 37

 
 
 =
 
 
 

CM  (9) 

Next, in the third column of this matrix, the substitute numbering is introduced. 

Hence 

 

5 3 5

6 2 6

1 37 11

2 37 12

 
 
 =
 
 
 

CM  (10) 

Since two vertices of the hexagon keep in contact with the same boundary node, 

the procedure of a two-level sort is used. Firstly, matrix (10) is ordered ascendingly 

taking into account the boundary node number and then descendingly in regard to 

the third substitute column. Finally, the matrix CM is of the form 
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6 2 6

5 3 5

2 37 12

1 37 11

 
 
 =
 
 
 

CM  (11) 

In the case when the boundary nodes contact, including the first and the last 

boundary node at the same time, then the CM is divided into two of the following 

matrices 

 1 2

6 2 6 2 37 12

5 3 5 1 37 11

   
= =   

   
CM CM  (12) 

The next step is finding  a minimum and maximum number of the hexagon node 

and the boundary node in matrices CM1 and CM2 (see expressions (12)). 
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where k is the appropriate number of a column in the matrices. The nodes that are 

not in contact create a new contour of domain. It is done by searching for a mini-

mum and maximum of the hexagon nodes. The boundary nodes from 1 to 

min(CM1) and from 1 to min(CM2) are removed. The different case is when all of 

the hexagon nodes keep in contact (see Fig. 6). Then a closed contour is obtained 

using the new boundary element by connecting boundary nodes 4 and 34. 

To check the effectiveness of the proposed algorithm, the example of computa-

tions was carried out. 

4. Numerical example 

The square domain of dimensions 0.1×0.1 m, shown in Figure 7, has been con-

sidered. Thermal conductivity equals λ = 1 W/(m·K). The boundary conditions 

have been marked in  Figure 7. The initial boundary has been divided into 34 linear 

boundary elements. The grid of 53 internal nodes has been used. On the holes 

created via topological derivative, the Neumann condition (q = 0) is prescribed. 

Holes with r = 0.05 were used and the iterative procedure was stopped when 50% 

of material from the initial domain was eliminated. Figure 8 illustrates the tempera-

ture distribution in the domain considered, while Figure 9 presents the topological 

derivative obtained in the first iteration (i = 0). 
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Fig. 7. Domain considered 

Due to the symmetry of the problem, only half of domain is taken into account. 

 

   

 Fig. 8. Temperature distribution at i = 0 Fig. 9. Topological derivative at i = 0 

 

 Fig. 10. Temperature distribution at i = 1 
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Fig. 11. Final result 

Figure 10 shows the temperature distribution at i = 1. The final result was obtained 

at iteration i = 21, as can be seen in Figure 11. 

5. Conclusions 

In the present work, the topological derivative is used to obtain an optimal 

shape of domain. This paper focuses on describing the algorithm of rebuilding 

the boundary of domain. It presents some details concerning creating holes inside 

the area and removing the nodes. To inspect the correctness of the algorithm, 

the example of computation was conducted. The results of the study show good 

agreement with the available literature. 
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