PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A self-adaptive Tseng extragradient method for solving monotone variational inequality and fixed point problems in Banach spaces

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we introduce a self-adaptive projection method for finding a common element in the solution set of variational inequalities (VIs) and fixed point set for relatively nonexpansive mappings in 2-uniformly convex and uniformly smooth real Banach spaces. We prove a strong convergence result for the sequence generated by our algorithm without imposing a Lipschitz condition on the cost operator of the VIs. We also provide some numerical examples to illustrate the performance of the proposed algorithm by comparing with related methods in the literature. This result extends and improves some recent results in the literature in this direction.
Wydawca
Rocznik
Strony
527--547
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
  • Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, P.O. Box 94 Medunsa 0204, Pretoria, South Africa
Bibliografia
  • [1] H. Iiduka, A new iterative algorithm for the variational inequality problem over the fixed point set of a firmly nonexpansive mapping, Optimization 59 (2010), 873–885.
  • [2] H. Iiduka and I. Yamada, A use of conjugate gradient direction for the convex optimization problem over the fixed point set of a nonexpansive mapping, SIAM J. Optim. 19 (2009), 1881–1893.
  • [3] H. Iiduka and I. Yamada, A subgradient-type method for the equilibrium problem over the fixed point set and its applications, Optimization 58 (2009), 251–261.
  • [4] P. E. Maingé, A hybrid extragradient-viscosity method for monotone operators and fixed point problems, SIAM J. Control Optim. 47 (2008), 1499–1515
  • [5] P. E. Maingé, Projected subgradient techniques and viscosity methods for optimization with variational inequality constraints, Eur. J. Oper. Res. 205 (2010), 501–506.
  • [6] A. Iusem and M. Nasri, Korpelevich’s method for variational inequality problem in Banach spaces, J. Global Optim. 50 (2011), 59–76.
  • [7] J. Mashreghi and M. Nasri, Forcing strong convergence of Korpelevich’s method in Banach spaces with its applications in game theory, Nonlinear Anal. 72 (2010), 2086–2099.
  • [8] F. Facchinei and J. S. Pang, Finite-dimensional Variational Inequalities and Complementarity Problems, Springer, New York, 2003, Springer Series in Operations Research, Vols. I and II.
  • [9] R. Glowinski, J. L. Lions, and R. Trémoliéres, Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam, 1981.
  • [10] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980.
  • [11] I. V. Konnov, Combined Relaxation Methods for Variational Inequalities, Springer-Verlag, Berlin, 2001.
  • [12] P. Marcotte, Applications of Khobotov’s algorithm to variational and network equilibrium problems, INFOR. Inf. Syst. Oper. Res. 29 (1991), 255–270.
  • [13] Y. Censor, A. Gibali, and S. Reich, Extensions of Korpelevich’s extragradient method for variational inequality problems in Euclidean space, Optimization 61 (2012), 119–1132.
  • [14] G. M. Korpelevich, The extragradient method for finding saddle points and other problems, Ekon. Mat. Metody. 12 (1976), 747–756, (in Russian).
  • [15] Y. Censor, A. Gibali, and S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert spaces, J. Optim. Theory Appl. 148 (2011), 318–335.
  • [16] Y. Censor, A. Gibali, and S. Reich, Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space, Optim. Methods Softw. 26 (2011), 827–845.
  • [17] Y. Shehu, Single projection algorithm for variational inequalities in Banach spaces with applications to contact problems, Acta Math. Sci. Ser. B (Engl. Ed.) 40 (2020), no. 4, 1045–1063.
  • [18] Y. Shehu, Q. L. Dong, and D. Jiang, Single projection method for pseudo-monotone variational inequality in Hilbert spaces, Optimization 68 (2019), 385–409.
  • [19] M. V. Solodov and B. F. Svaiter, A new projection method for variational inequality problems, SIAM J. Control Optim. 37 (1999), no. 3, 765–776.
  • [20] L. C. Ceng, M. Teboulle, and J. C. Yao, Weak convergence of an iterative method for pseudomonotone variational inequalities and fixed-point problems, J. Optim. Theory Appl. 146 (2010), 19–31.
  • [21] B. S. He, A class of projection and contraction methods for monotone variational inequalities, Appl. Math. Optim. 35 (1997), 69–76.
  • [22] S. V. Denisov, V. V. Semenov, and L. M. Chabak, Convergence of the modified extragradient method for variational inequalities with non-Lipschitz operators, Cybern. Syst. 51 (2015), 757–765.
  • [23] P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim. 38 (2009), 431–446.
  • [24] C. E. Chidume and M. O. Nnakwe, Convergence theorems of subgradient extragradient algorithm for solving variational inequalities and a convex feasibility problem, J. Fixed Point Theory Appl. 2018 (2018), 16.
  • [25] Y. Liu, Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Banach spaces, J. Nonlinear Sci. Appl. 10 (2017), 395–409.
  • [26] B. Halpern, Fixed points of nonexpanding maps, Proc. Amer. Math. Soc. 73 (1967), 957–961.
  • [27] R. Kraikaew and S. Saejung, Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces, J. Optim. Theory Appl. 163 (2014), 399–412.
  • [28] L. O. Jolaoso, A. Taiwo, T. O. Alakoya, and O. T. Mewomo, A strong convergence theorem for solving pseudo-monotone variational inequalities using projection methods in a reflexive Banach space, J. Optim. Theory Appl. 185 (2020), no. 3, 744–766.
  • [29] L. O. Jolaoso, A. Taiwo, T. O. Alakoya, and O. T. Mewomo, A unified algorithm for solving variational inequality and fixed point problems with application to the split equality problem, Comput. Appl. Math. 39 (2020), 38.
  • [30] L. O. Jolaoso, A. Taiwo, T. O. Alakoya, and O. T. Mewomo, A self adaptive inertial subgradient extragradient algorithm for variational inequality and common fixed point of multivalued mappings in Hilbert spaces, Demonstr. Math. 52 (2019), 183–203.
  • [31] Y. C. Yao and M. Postolache, Iterative methods for pseudomonotone variational inequalities and fixed-point problems, J. Optim. Theory Appl. 155 (2012), 273–287.
  • [32] L. O. Jolaoso and M. Aphane, Weak and strong convergence Bregman extragradient schemes for solving pseudo-monotone and non-Lipschitz variational inequalities, J. Ineq. Appl. 2020 (2020), 195.
  • [33] F. Ma, A subgradient extragradient algorithm for solving monotone variational inequalities in Banach spaces, J. Ineq. Appl. 2020 (2020), 26.
  • [34] Y. Shehu and O. S. Iyiola, Iterative algorithms for solving fixed point problems and variational inequalities with uniformly continuous monotone operators, Numer. Algorithms 79 (2018), 529–553.
  • [35] L. Q. Anh, T. Bantaojai, N. P. Duc, T. Q. Duy, and R. Wangkeeree, Convergence of solutions to lexicographic equilibrium problems, J. Appl. Numer. Optim. 1 (2019), 39–51.
  • [36] C. E. Chidume, A. Adamu, and L. C. Okereke, A Krasnoselskii-type algorithm for approximating solutions of variational inequality problems and convex feasibility problems, J. Nonlinear Var. Anal. 2 (2018), 203–218.
  • [37] L. L. Duan, A. F. Shi, L. Wei, and R. R. Agarwal, Construction techniques of projection sets in hybrid methods for Infinite weakly relatively nonexpansive mappings with applications, J. Nonlinear Funct. Anal. 2019 (2019), 14.
  • [38] D. V. Thong, Y. Shehu, and O. S. Iyiola, A new iterative method for solving pseudomonotone variational inequalities with non-Lipschitz operators, Comput. Appl. Math. 39 (2020), 108.
  • [39] Y. Takahashi, K. Hashimoto, and M. Kato, On sharp uniform convexity, smoothness, and strong type, cotype inequalities, J. Nonlinear Convex Anal. 3 (2002), 267–281.
  • [40] W. Takahashi and K. Zembayashi, Strong and weak convergence theorems for equilibrium problems and relatively non-expansive mappings in Banach spaces, Nonlinear Anal. 70 (2009), 45–57.
  • [41] Y. I. Alber, Metric and generalized projections in Banach spaces: properties and applications, in: A. G. Kartsatos (ed.), Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, 1996, pp. 15–50.
  • [42] S. Kamimura and W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim. 13 (2002), 938–945.
  • [43] L. C. Ceng and J. C. Yao, A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, J. Comput. Applied Math. 214 (2008), 186–201.
  • [44] S. Matsushita and W. Takahashi, A strong convergence theorem for relatively nonexpansive mapping in a Banach space, J. Approx. Theory 134 (2005), no. 2, 257–266.
  • [45] Y. I. Alber and I. Ryazantseva, Nonlinear Ill-posed Problems of Monotone Type, Springer, Dordrecht, 2006.
  • [46] K. Nakajo, Strong convergence for gradient projection method and relatively nonexpansive mappings in Banach spaces, Appl. Math. Comput. 271 (2015), 251–258.
  • [47] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), 1127–1138.
  • [48] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
  • [49] H. K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull. Austral. Math. Soc. 65 (2002), 109–113.
  • [50] P. E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal. 16 (2008), 899–912.
  • [51] V. Dadashi, O. S. Iyiola, and Y. Shehu, The subgradient extragradient method for pseudomonotone equilibrium problems, Optimization 69 (2020), no. 4, 901–923
  • [52] Y. Shehu, O. S. Iyiola, D. V. Thong, and N. T. C. Van, An inertial subgradient extragradient algorithm extended to pseudomonotone equilibrium problems, Math. Methods Oper. Res. 93 (2021), 213–242.
  • [53] O. S. Iyiola, F. U. Ogbuisi, and Y. Shehu, An inertial type iterative method with Armijo linesearch for nonmonotone equilibrium problems, Calcolo 55 (2018), 52.
  • [54] Y. Shehu, O. S. Iyiola, and F. U. Ogbuisi, Iterative methods with inertial terms for nonexpansive mappings: application to compressed sensing, Numer. Algorithms 83 (2020), 1321–1347.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-87004c4f-40e6-4c45-89ec-79aa47576173
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.