PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The preliminary studies of a structure and electrospinning of new polyurethanes based on synthetic atactic poly[(R, S)-3-hydroxybutyrate]

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Novel polyurethanes based on synthetic, atactic poly[(R, S)-3-hydroxybutyrate] (a-PHB) and polycaprolactone (PCL) or polyoxytetramethylene (PTMG) diols were synthesized. It was shown that the presence of a-PHB within soft segments reduces crystallinity of PUR. Because of the low melting temperature for polyurethanes with PCL in soft segments, at this stage of work, electrospinning was limited to polyurethanes containing PTMG and a-PHB. Polyurethane containing 80% of PTMG and 20% of a-PHB was electrospun at various parameters from hexafluoro-2-propanole solution, resulting in formation of fibers with the average diameter ca. 2 μm. The fiber diameter decreased with decreasing polymer concentration in a solution and was practically insensitive to the needle-collector distance in the applied range of distances.
Rocznik
Strony
55--60
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Polymer Physics Laboratory,5B Pawińskiego St., 02-106, Warsaw, Poland
autor
  • Department of Chemistry and Commodity Science, Gdynia Maritime University, 83 Morska St., 81-225 Gdynia, Poland
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Polymer Physics Laboratory,5B Pawińskiego St., 02-106, Warsaw, Poland
autor
  • Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Skłodowska-Curie St., 41-800 Zabrze, Poland
autor
  • Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Skłodowska-Curie St., 41-800 Zabrze, Poland
autor
  • Department of Chemistry and Commodity Science, Gdynia Maritime University, 83 Morska St., 81-225 Gdynia, Poland
Bibliografia
  • [1] I.C. Parrag, “The development of elastomeric biodegradable polyurethane scaffolds for cardiac tissue engineering”, PhD Thesis, University of Toronto, Toronto, 2010.
  • [2] D. Liang, B.S. Hsiao, and B. Chu, “Functional electrospun nanofibrous scaffolds for biomedical applications”, Advanced Drug Delivery Reviews 59, 1392-1412 (2007).
  • [3] N. Bhardwaj and S.C. Kundu, “Electrospinning: a fascinating fiber fabrication technique”, Biotechnology Advances 28, 325-347 (2010).
  • [4] S.A. Sell, M.J. McClure, K. Garg, P.S. Wolfe, and G.L. Bowlin, “Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering”, Advanced Drug Delivery Reviews 61, 1007-1019 (2009).
  • [5] S. Agarwal, J.H. Wendorff, and A. Greiner, “Use of electrospinning technique for biomedical applications”, Polymer 49, 5603-5621 (2008).
  • [6] A.E. Hafeman, K.J. Zienkiewicz, A.L. Zachman, H.-J. Sung, L.B. Nanney, J.M. Davidson, and S.A. Guelcher, “Characterization of the degradation mechanisms of lysine-derived aliphatic poly(ester urethane) scaffolds”, Biomaterials 32, 419-429 (2011).
  • [7] W. Ou, H. Qiu, Z. Chen, and K. Xu, “Biodegradable block poly(ester-urethane)s based on poly(3-hydroxybutyrateco-4- hydroxybutyrate) copolymers”, Biomaterials 32, 3178-3188 (2011).
  • [8] L.J.R. Foster and B.J. Tighe, “Centrifugally spun polyhydroxybutyrate fibres: accelerated hydrolytic degradation studies”, Polymer Degradation and Stability 87, 1-10 (2005).
  • [9] T. Defoirdt, N. Boon, P. Sorgeloos, W. Verstraete, and P. Bossier “Short-chain fatty acids and poly-s-hydroxyalkanoates: (new) biocontrol agents for a sustainable animal production”, Biotechnology Advances 27, 680-685 (2009).
  • [10] V. Piddubnyak, P. Kurcok, A. Matuszowicz, M. Głowala, A. Fiszer- Kierzkowska, Z. Jedliński, M. Juzwa, and Z. Krawczyk, “Oligo-3-hydroxybutyrates as potential carriers for drug delivery”, Biomaterials 25, 5271-5279 (2004).
  • [11] J. Brzeska, H. Janik, M. Kowalczuk, and M. Rutkowska, “Preliminary investigations of biocompatibility of polyurethanes based on synthetic polyhydroxybutyrate”, Engineering of Biomaterials 106-108 (XIV), 65-72 (2011).
  • [12] J. Brzeska, H. Janik, M. Kowalczuk, and M. Rutkowska, “Influence of polyurethanes based on synthetic poly([R,S]-3-hydroxybutyrate) on microorganisms growth”, Engineering Biomaterials 106-108 (XIV), 73-78 (2011).
  • [13] J. Brzeska, P. Dacko, A. Heimowska, H. Janik, M. Kowalczuk, and M. Rutkowska, “Flexibility to degradation of polyurethanes with synthetic polyhydroxybutyrate in oxidizing and hydrolytic environment”, Protection Against Corrosion 1, 8-14 (2012), (in Polish).
  • [14] M.M. Demir, I.Yilgor, B.Yilgor, and B.Erman, “Electrospinning of polyurethane fibers”, Polymer 43, 3303-3309 (2002).
  • [15] P.C. Caracciolo, V. Thomas, Y.K. Vohra, F. Buffa, and G.A. Abraham, “Electrospinning of novel biodegradable poly(ester urethane)s and poly(ester urethane urea)s for soft tissue-engineering applications”, J Mater Sci: Mater Med 20, 2129-2137 (2009).
  • [16] P.N. Shah, R.L. Manthe, S.T. Lopina, and Y.H. Yun, “Electrospinning of L-tyrosine polyurethanes for potential biomedical applications”, Polymer 50, 2281-2289 (2009).
  • [17] S.A. Theron, E. Zussman, and A.L. Yarin, “Experimental investigation of the governing parameters in the electrospinning of polymer solutions”, Polymer 45, 2017-2030 (2004).
  • [18] H. Arslan, G. Adamus, B. Hazer, and M. Kowalczuk, “Electrospray ionisation tandem mass spectrometry of poly[(R,S)-3- hydroxybutanoic acid] telechelics containing primary hydroxy end groups”, Rapid Commun. Mass Spectrom. 13, 2433-2438 (1999).
  • [19] J. Brzeska, P. Dacko, H. Janik, M. Kowalczuk, and M. Rutkowska, “Biodegradable polyurethanes and the way of their production”, Patent No 212763, (2012), (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-86fd3a70-832a-472e-8a4a-f7b223d7d593
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.