PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

UV Radiation Detection Using Optical Sensor Based on Eu3+ Doped PMMA

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Progress in UV treatment applications requires new compact and sensor constructions. In the paper a hybrid (organic-inorganic) rare-earth-based polymeric UV sensor construction is proposed. The efficient luminescence of poly(methyl) methacrylate (PMMA) matrix doped by europium was used for testing the optical sensor (optrode) construction. The europium complex assures effective luminescence in the visible range with well determined multi-peak spectrum emission enabling construction of the optrode. The fabricated UV optical fibre sensor was used for determination of Nd:YAG laser intensity measurements at the third harmonic (355 nm) in the radiation power range 5.0-34.0 mW. The multi-peak luminescence spectrum was used for optimization of the measurement formula. The composition of luminescent peak intensity enables to increase the slope of sensitivity up to -2.8 mW-1. The obtained results and advantages of the optical fibre construction enable to apply it in numerous UV detection systems.
Słowa kluczowe
Rocznik
Strony
615--621
Opis fizyczny
Bibliogr. 25 poz., rys., wykr.
Twórcy
autor
  • Bialystok University of Technology, Faculty of Electrical Engineering, Wiejska 45d, 15-351 Białystok, Poland
  • Bialystok University of Technology, Faculty of Electrical Engineering, Wiejska 45d, 15-351 Białystok, Poland
autor
  • Bialystok University of Technology, Faculty of Electrical Engineering, Wiejska 45d, 15-351 Białystok, Poland
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] World Health Organization International Agency for Research on Cancer (2006). Exposure to artificial UV radiation and skin cancer. International Agency for Research on Cancer.
  • [2] Diffey, B.L. (1980). Ultraviolet radiation physics and the skin. Phys . Med . Biol., 25(3), 405-426.
  • [3] Barnal, A., Foldes, I.B., Gingl, Z., Mingesz, R. (2013). Compact energy measuring system for short pulse lasers. Metrol. Meas. Syst., 20(2), 183-190.
  • [4] Ćwirko, R., Ćwirko, J., Bielecki, Z. (2009). Measurement system for testing the optical radiation detectors in a broad temperature range. Metrol. Meas. Syst., 16(3), 491-500.
  • [5] Taylor, D.K., Anstey, A.V. Coleman, A.J., Diffey, B.L., Farr, P.M., Ferguson, J., Ibbotson, S., Langmack, K., Lloyd, J.J., Mccann, P., Martin, C.J., Menage, H.DUP., Moseley, H., Murphy, G., Pye, S.D., Rhodes, L.E., Rogers, S. (2002). Guidelines for dosimetry and calibration in ultraviolet radiation therapy: a report of a British Photodermatology Group workshop. British Journal of Dermatology, 146, 755-763.
  • [6] Hockberger, P.E. (2002). A history of ultraviolet photobiology for humans, animals and microorganisms. Photochemistry and Photobiology. 76(6), 561-579.
  • [7] Li, M., Qiang, Z., Bolton, J.R., Li, W., Chen, P. (2014). UV disinfection of secondary water supply: Online monitoring with micro-fluorescent silica detectors. Chemical Engineering Journal, 255, 165-170.
  • [8] Choudhary, R., Bandla S. (2012). Ultraviolet pasteurization for food industry. International Journal of Food Science and Nutrition Engineering, 2, 12-15.
  • [9] Mansoori, G.A., Mohazzabi, P., McCormack, P., Jabbari, S. (2007). Nanotechnology in cancer prevention, detection and treatment: bright future lies ahead. World Review of Science Technology and Sustainable Development, 4, 226-257.
  • [10] Korkotian. E., Oron. D., b, Silberberg. Y., b, Segal. M. (2004). Confocal microscopic imaging of fast UVlaser photolysis of caged compounds. Journal of Neuroscience Methods, 133, 153-159.
  • [11] Zawadzki, A., Shrestha, D.S., He, B. (2007). Biodiesel blend level detection using ultraviolet absorption spectra. Transactions of the ASABE, 50, 1349-1353.
  • [12] Djuri, Z., Dankovi, T., Jak, Z., Randjelovi, D., Petrovi, R., Ehrfeld, W., Schmidt, A., Hecker K. (1999). A silicon UV flame detector utilizing photonic crystal. Proc. SPIE, 3680, 601-610.
  • [13] Ihlemann, J., Bekesi, J., Klein-Wiele, J.H., Simon, P. (2008). Processing of dielectric optical coatings by nanosecond and femtosecond UV laser ablation. Laser Chemistry, 2008, 1-6.
  • [14] Soltani, M., Veisi, R., Asghar Rhoani, A., Ramzani, O., Naji, H.R., Suhaimi Bakar, E. (2014). UV-curable coating process on CMYK-printed duplex paperboard, part I mechanical and optical properties. Bioresources, 9, 86-92.
  • [15] Barbucha, R., Kocik, M., Mizeraczyk, J. Kozioł, G., Borecki, J. (2008). Laser Direct Imaging of tracks on PCB covered with laser photoresist. Bulletin of the Polish Academy of Sciences, Technical Sciences, 56(1), 17-20.
  • [16] Wu, X., Yamilov, A., Liu, X., Li, S., Dravid, V.P., Chang, R.P.H., Cao, H. (2004). Ultraviolet photonic crystal laser. Applied Physics Letters, 85(17).
  • [17] Neumann. J., et. al. (2009). Development of a pulsed ultraviolet solid-state laser system for Mars surface analysis by laser desorption/ionization mass spectroscopy. European Planetary Science Congress, 4, 624.
  • [18] Miluski., P., Dorosz, D., Kochanowicz, M., Żmojda, J. (2013). Optical fibre temperature sensor based on fluorescein and rhodamine codoped polymer layer. Proc. of SPIE, 8903, 89030C.
  • [19] Miluski, P., Dorosz, D., Kochanowicz, M., Zmojda, J., Dorosz, J. (2015). The xanthene dyes doped PMMA microspheres for optical sensors applications. Proc. SPIE 9816, DOI: 10.1117/12.2228364.
  • [20] Miluski, P., Dorosz, D., Żmojda, J., Kochanowicz, M., Dorosz, J. (2015). Luminescent polymer optical fibre sensor for temperature measurement. Acta Physica Polonica A, 127, 730-733.
  • [21] Żmojda, J., Kochanowicz, M., Miluski, P., Dorosz, D. (2014). Side-detecting optical fiber doped with Tb3+ for ultraviolet sensor application. Fibers, 2, 150-157.
  • [22] Żmojda, J., Dorosz, D., Kochanowicz, M., Miluski, P., Czajkowski, K., Ragiń, T. (2013). Visible emission in Sm3+ and Tb3+ doped phosphate glass excited by UV radiation. Proc. of SPIE, 8903, 890306-1.
  • [23] Tama, H.Y., Chi-Fung, J.P., Zhou, G., Cheng, X., Tse, M.L.V. (2010). Special structured polymer fibers for sensing applications. Optical Fiber Technology, 16(6), 357-366.
  • [24] Bilro, L., Alberto, N., Pinto, J.L., Nogueira, R. (2012). Optical sensors based on plastic fibers. Sensors, 12(9), 12184-12207.
  • [25] Parra, D.F., Mucciolo, A., Brito, H.F., Thompson, L.C. (2003). Optical characteristics of the Eu3+-β- diketonate complex doped into epoxy resin. Journal of Solid State Chemistry, 171(1−2), 412-419.
Uwagi
EN
This work was supported by the project no. S/WE/4/2 013.
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-86f9d41b-1656-418d-92ac-60c971bf9680
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.