PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of new potential amine activators for carbon dioxide absorption in carbonate solutions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Results of an extensive research program, aimed at finding new, more efficient activators of carbon dioxide absorption into aqueous carbonate/bicarbonate solutions are presented. Both single amines (2-ethyl-aminoethanol, 2-isopropyl aminoethanol, piperazine, tetraethylenepentamine, N-ethyl-piperazine and glicyne) and amine mixtures have been investigated. Absorption rate measurements were conducted in a laminar-jet absorber. Reaction rate constants for the particular activators were determined. Mixtures of aliphatic amines with cyclic amines, as well as mixtures of cyclic amines with cyclic amines were found to exhibit synergetic effect. Such amine mixtures might be used as new promoters for CO2 absorption in carbonate solutions in the modified Benfield process.
Rocznik
Strony
353--–365
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
autor
  • New Chemical Syntheses Institute, Tysiąclecia PP 13a, 24-110 Puławy, Poland
  • Grupa Azoty Nitrogen Works PUŁAWY S.A., Tysiąclecia PP 13, 24-110 Puławy, Poland
autor
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
autor
  • New Chemical Syntheses Institute, Tysiąclecia PP 13a, 24-110 Puławy, Poland
Bibliografia
  • 1. Amann J.-M.G., Bouallou C., 2009. A New aqueous solvent based on a blend of N-methyldiethanolamine and triethanolamin for CO2 recovery in post-combustion: Kinetics study. Energy Procedia, 1, 901–908. DOI: 10.1016/j.egypro.2009.01.120.
  • 2. Barth D., Tondre C., Delpuch J.J., 1986. Stopped-flow determination of carbon dioxide diethanolamine reaction mechanism. Kinetics of carbamate formation. Int. J. Chem. Kin., 15, 1147–1160. DOI: 10.1002/kin.550151104.
  • 3. Behr P., Maun A., Deutgen K., Tunnat A., Oeljeklaus G., Görner K., 2011. Kinetic study on promoted potassium carbonate solutions for CO2 capture from flue gas. Energy Procedia, 4, 85–92. DOI: 10.1016/j.egypro.2011. 01.027.
  • 4. Bińczak G., Moniuk W., Mordecka Z., Mo˙ze´nski C., 2016. Investigations of carbon dioxide absorption into aqueous potassium carbonate solutions containing primary and secondary alkanolamines. Chem. Process. Eng., 37, 83–95. DOI: 10.1515/cpe-2016-0009.
  • 5. Bindwal A.B., Vaidya P.D., Kenig E.Y., 2011. Kinetics of carbon dioxide removal by aqueous diamines. Chem. Eng. J., 169, 144–150. DOI: 10.1016/j.cej.2011.02.074.
  • 6. Bischnoi S., Rochelle G.T., 2000. Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility. Chem. Eng. Sci., 55, 5531–5543. DOI: 10.1016/S0009-2509(00)00182-2.
  • 7. Blanc C., Demarais G., 1981. Vitesses de la réaction du CO2 avec la diethanolamine. Entropie, 102, 53–61.
  • 8. Blauwhoff P.M.M., Versteeg G.F., van Swaaij W.P.M., 1983. A study on the reaction between CO2 and alkanolamines in aqueous solutions. Chem. Eng. Sci., 38, 1411–1429. DOI: 10.1016/0009-2509(83)80077-3.
  • 9. Bougie F., Lauzo-Gauthier J., Iliuta M.C., 2009. Acceleration of the reaction of carbon dioxide into aqueous 2-amino-2-hydroxymethyl-1,3-propanediol solutions by piperazine addition. Chem. Eng. Sci., 64, 2011–2019. DOI:10.1016/j.ces.2009.01.030.
  • 10. Caplow M.J., 1968. Kinetics of carbamate formation and breakdown. J. Am. Chem. Soc., 90, 6795–6803. DOI: 10.1021/ja01026a041.
  • 11. Conway W., Fernandes D., Beyad Y., Burns R., Lawrance G., Puxty G., Maeder M., 2013. Reactions of CO2 with aqueous piperazine solutions: Formation and decomposition of mono- and dicarbamic AIDS/carbamates of piperazine at 25◦C. J. Phys. Chem. A., 117, 806–813. DOI: 10.1021/jp310560b.
  • 12. Cullinane J.T., Rochelle G.T., 2004. Carbon dioxide absorption with aqueous potassium carbonate promoted by piperazine. Chem. Eng. Sci., 59, 3619–3630. DOI: 10.1016/j.ces.2004.03.029.
  • 13. Cwalina J., Kubicki J., 1977. Effect of selected activators on carbon dioxide absorption in potassium carbonate solution. Applied Chemistry, 11, 47–57 (in Polish).
  • 14. Derks P.W.J., Kleingeld T., van Aken C., Hogendoorn J.A., Versteeg G.F., 2006. Kinetics of absorption of carbon dioxide in aqueous piperazine solutions. Chem. Eng. Sci., 61, 6837–6854. DOI: 10.1016/j.ces.2006.07.009.
  • 15. Donaldson T.L., Nguyen Y.N., 1980. Carbon dioxide reaction and transport in aqueous amine membranes. Ind. Eng. Chem. Fundam., 19, 260–266. DOI: 10.1021/i160075a005.
  • 16. Dubois L., Thomas D., 2010. Modelling and experimental study of carbon dioxide absorption into aqueous aminebase solvents, In: de Haan A.B., Kooijman H. and Górak A. (Eds.), Conference Proceedings. Distillation, Absorption, 377–382. 12-15.09.2010, Eindhoven, The Netherlands.
  • 17. Jensen A., Jensen J.B., Faurholt C., 1952. Studies on carbamates: VI. The carbamate of glycine. Acta Chem. Scand., 6, 395–397. DOI: 10.3891/acta.chem.scand.06-0395.
  • 18. Jensen M.B., Jørgensen B., Faurholt C., 1954. Reactions between carbon dioxide and aminoalcohols. I. Monoethanoloamine and diethanolamine. Acta Chem. Scand., 8, 1137–1140. DOI: 10.3891/acta.chem.scand.08-1137.
  • 19. Kim Y.E., Choi J.H., Nam S.C., Yoon Y.I., 2012. CO2 absorption capacity using aqueous potassium carbonate with 2-methylpiperazine and piperazine. J. Ind. Eng. Chem., 18, 105–110. DOI: 10.1016/j.jiec.2011.11.078.
  • 20. Laddha S.S., Danckwerts P.V., 1981. Reaction of CO2 with ethanolamines: Kinetics from gas absorption. Chem. Eng. Sci., 36, 479–482. DOI: 10.1016/0009-2509(81)80135-2.
  • 21. Leder E., 1971. The absorption of CO2 into chemically reactive solutions at high temperatures. Chem. Eng. Sci., 26, 1381–1390. DOI: 10.1016/0009-2509(71)80058-1.
  • 22. Mimura T., Suda T., Iwaki I., Honda A., Kumazawa H., 1998. Kinetics of reaction between carbon dioxide and sterically hindered amines for carbon dioxide recovery from power plant flue gases. Chem. Eng. Comm., 170, 1:245–260. DOI: 10.1080/00986449808912745.
  • 23. Penny D.E., Ritter T.J., 1983. Kinetic study of the reaction between carbon dioxide and primary amines. J. Chem. Soc. Faraday Trans., 79, 2103–2109. DOI: 10.1039/F19837902103.
  • 24. Pohorecki R., Moniuk W., 1988. Kinetics of reaction between carbon dioxide and hydroxyl ions in aqueous electrolyte solution. Chem. Eng. Sci., 43, 1677–1684. DOI: 10.1016/0009-2509(88)85159-5.
  • 25. Pohorecki R., Mo˙ze´nski C., 1998. A new absorbent for carbon dioxide and hydrogen sulphide absorption process. Chem. Eng. Proc., 37, 69–78. DOI: 10.1016/S0255-2701(97)00038-X.
  • 26. Pohorecki R., Trong X.D., Moniuk W., 1988. Investigation of carbon dioxide absorption in aqueous solutions of potassium carbonates containing ethylaminoethanoles. II. Kinetic relation for 2-ethylaminoethanol. Chem. Process Eng., 9, 667–680 (in Polish).
  • 27. Rahimpour M.R., Kashkooli A.Z., 2004. Enhanced carbon dioxide removal by promoted hot potassium carbonate in a split-flow absorber. Chem. Eng. Proc., 43, 857–865. DOI: 10.1016/S0255-2701(03)00106-5.
  • 28. Rayer A.V., Sumon K.Z., Henni A., Tontiwachwuthikul P., 2011. Kinetics of the reaction of carbon dioxide with cyclic amines using the stopped-flow technique. Energy Procedia, 4, 140–147. DOI: 10.1016/j.egypro.2011. 01.034.
  • 29. Sada E., Kumazawa H., Butt M.A., 1976. Gas absorption with consecutive chemical reaction: Absorption of carbon dioxide into aqueous amine solutions. Can. J. Chem. Eng., 31, 421–424. DOI: 10.1002/cjce.5450540507.
  • 30. Sharma M.M., 1965. Kinetics of reactions of carbonyl sulphide and carbon dioxide with amines. Trans. Faraday Soc., 61, 681–688. DOI: 10.1039/TF9656100681.
  • 31. Shen S., Feng X., Zhao R., Ghosh U.K., Chen A., 2013. Kinetic study of carbon dioxide absorption with aqueous potassium carbonate promoted by arginine. Chem. Eng. J., 222, 478–487. DOI: 10.1016/j.cej.2013.02.093.
  • 32. Singh P., Niederer J.P.M., Versteg G.F., 2009. Structure and activity relationships for amine-based CO2 absorbents – II. Chem. Eng. Res. Des., 87, 135–144. DOI: 10.1016/j.cherd.2008.07.014.
  • 33. SunW.C., Yong C.B., Li M.H., 2005. Kinetics of the absorption of carbon dioxide into mixed aqueous solutions of 2-amino-2-methyl-1-propanol and piperazine. Chem. Eng. Sci., 60, 503–516. DOI: 10.1016/j.ces.2004.08.012.
  • 34. Thee H., Suryaputradinata Y.A., Mumford K.A., Smith K.H., da Silva G., Kentish S.E., Stevens G.W., 2012. A kinetic and process modelling study of CO2 capture with MEA-promoted potassium carbonate solutions. Chem. Eng. J., 210, 271–279. DOI: 10.1016/j.cej.2012.08.092.
  • 35. Tseng P.C., Ho W.S., Savage D.W., 1988. Carbon dioxide absorption into promoted carbonate solutions. AIChE Journal, 34, 922–931. DOI: 10.1002/aic.690340604.
  • 36. Ume C.S., Alper E., Gordesli F.P., 2013. Kinetics of carbon dioxide reaction with aqueous mixture of piperazine and 2-amino-2-ethyl-1,3-propanediol. Int. J. Chem. Kin., 45, 161–167. DOI: 10.1002/kin.20752.
  • 37. Versteeg G.F., Oyevaar M.H., 1989. The reaction between CO2 and diethanolamine at 298K. Chem. Eng. Sci., 44, 1264-1268. DOI: 10.1016/0009-2509(89)87026-5.
  • 38. Yamada H., Chowdhury F.A., Goto K., Higashii T., 2013. CO2 solubility and species distribution in aqueous solutions of 2-(isopropylamino)ethanol and its structural isomers. Int. J. Greenhouse Gas Control, 17, 99–105. DOI: 10.1016/j.ijggc.2013.03.027.
  • 39. Yih S.-M., Sun C.-C., 1987. Simultaneous absorption of hydrogen sulphide and carbon dioxide into potassium carbonate solution with or without amine promotors. Chem. Eng. J., 34, 65–72. DOI: 10.1016/0300-9467(87) 87002-8.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-86f84e03-4c9e-4f0e-bb8a-aed95c4c5bb7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.