PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Advanced Inversion Techniques for Ground Penetrating Radar

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ground Penetrating Radar (GPR) systems arenowadays standard inspection tools in several application areas, such as subsurface prospecting, civil engineering and cultural heritage monitoring. Usually, the raw output of GPR isprovided as a B-scan, which has to be further processed inorder to extract the needed information about the inspectedscene. In this framework, inversescattering-based approachesare gaining an ever-increasing interest, thanks to their capabilities of directly providing images of the physical and dielectricproperties of the investigated areas. In this paper, some advances in the development of such inversion techniques in theGPR field are revised and discussed.
Rocznik
Tom
Strony
37--42
Opis fizyczny
Bibliogr. 74 poz.,
Twórcy
autor
  • Department of Electrical, Electronic, Telecommunications Engineering and Naval Architecture, University of Genoa, Via Opera Pia, 11A, I-16145 Genova, Italy
autor
  • Department of Electrical, Electronic, Telecommunications Engineering and Naval Architecture, University of Genoa, Via Opera Pia, 11A, I-16145 Genova, Italy
autor
  • Department of Electrical, Electronic, Telecommunications Engineering and Naval Architecture, University of Genoa, Via Opera Pia, 11A, I-16145 Genova, Italy
Bibliografia
  • [1] A. Benedetto and L. Pajewski, Civil engineering applications of ground penetrating radar. Springer, 2015.
  • [2] J. Hugenschmidt and A. Kalogeropoulos, “The inspection of retaining walls using GPR”, J. of Appl. Geophys., vol. 67, no. 4, pp. 335–344, 2009.
  • [3] A. Randazzo and C. Estatico, “A regularisation scheme for electromagnetic inverse problems: application to crack detection in civil structures”, Nondestruc. Testing and Evaluation, vol. 27, no. 3, pp. 189–197, 2012.
  • [4] L. B. Conyers, Ground-penetrating radar for archaeology. Rowman Altamira, 2004.
  • [5] N. Masini, R. Persico, and E. Rizzo, “Some examples of GPR prospecting for monitoring of the monumental heritage”, J. of Geophys. and Engin., vol. 7, no. 2, p. 190–199, 2010.
  • [6] E. J. Baranoski, “Through-wall imaging: Historical perspective and future directions”, J. of the Franklin Institute, vol. 345, no. 6, pp. 556–569, 2008.
  • [7] M. J. Bevan, A. L. Endres, D. L. Rudolph, and G. Parkin, “The non-invasive characterization of pumping-induced dewatering using ground penetrating radar”, J. of Hydrol., vol. 281, no. 1-2, pp. 55–69, 2003.
  • [8] J. L. Porsani, W. M. Filho, V. R. Elis, F. Shimeles, J. C. Dourado, and H. P. Moura, “The use of GPR and VES in delineating a contamination plume in a landfill site: a case study in SE Brazil”, J. of Appl. Geophys., vol. 55, no. 3-4, pp. 199–209, 2004.
  • [9] L. Lo Monte, D. Erricolo, F. Soldovieri, and M. C. Wicks, “Radio frequency tomography for tunnel detection”, IEEE Trans. on Geosci. and Remote Sensing, vol. 48, no. 3, pp. 1128–1137, 2010.
  • [10] T. R. Watters et al., “MARSIS radar sounder evidence of buried basins in the northern lowlands of Mars”, Nature, vol. 444, no. 7121, pp. 905–908, 2006.
  • [11] O. Lopera, N. Milisavljević, and S. Lambot, “Clutter reduction in GPR measurements for detecting shallow buried landmines: a Colombian case study”, Near Surface Geophys., vol. 5, no. 9, pp. 57–64, 2007.
  • [12] J. Minet, S. Lambot, E. C. Slob, and M. Vanclooster, “Soil surfaces water content estimation by full-waveform GPR signal inversion in the presence of thin layers”, IEEE Trans. on Geosci. and Remote Sensing, vol. 48, no. 3, pp. 1138–1150, 2010.
  • [13] F. Frezza, L. Pajewski, C. Ponti, G. Schettini, and N. Tedeschi, “Cylindrical-wave approach for electromagnetic scattering by subsurface metallic targets in a lossy medium”, J. of Appl. Geophys., vol. 97, pp. 55–59, 2013.
  • [14] I. Giannakis, A. Giannopoulos, and C. Warren, “A realistic FDTD numerical modeling framework of ground penetrating radar for landmine detection”, IEEE J. of Selec. Topics in Appl. Earth Observ. and Remote Sensing, vol. 9, no. 1, pp. 37–51, 2016 (doi: 10.1109/JSTARS.2015.2468597).
  • [15] N. Diamanti and A. P. Annan, “Characterizing the energy distribution around GPR antennas”, J. of Appl. Geophys., vol. 99, pp. 83–90, 2013.
  • [16] A. Tran, C. Warren, F. Andr´e, A. Giannopoulos, and S. Lambot, “Numerical evaluation of a full-wave antenna model for near-field applications”, Near Surface Geophys., vol. 11, no. 2, pp. 155–165, 2013.
  • [17] M. Pastorino, Microwave Imaging. Hoboken: Wiley, 2010.
  • [18] W. C. Chew, Waves and Fields in Inhomogenous Media. Wiley, 1999.
  • [19] M. Bertero and P. Boccacci, Introduction to inverse problems in imaging. Bristol, UK: IOP Publishing, 1998.
  • [20] C. Dourthe, C. Pichot, J. Y. Dauvignac, and J. Cariou, “Inversion algorithm and measurement system for microwave tomography of buried object”, Radio Science, vol. 35, no. 5, pp. 1097–1108, 2000.
  • [21] M. Benedetti, M. Donelli, A. Martini, M. Pastorino, A. Rosani, and A. Massa, “An innovative microwave-imaging technique for nondestructive evaluation: Applications to civil structures monitoring and biological bodies inspection”, IEEE Trans. on Instrument. and Measur., vol. 55, no. 6, pp. 1878–1884, 2006.
  • [22] M. A. Ali and M. Moghaddam, “3D nonlinear super-resolution microwave inversion technique using time-domain data”, IEEE Trans. on Antenn. and Propag., vol. 58, no. 7, pp. 2327–2336, 2010.
  • [23] G. A. Meles, J. Van der Kruk, S. A. Greenhalgh, J. R. Ernst, H. Maurer, and A. G. Green, “A new vector waveform inversion algorithm for simultaneous updating of conductivity and permittivity parameters from combination crosshole/borehole-to-surface GPR data”, IEEE Trans. on Geosc. and Remote Sensing, vol. 48, no. 9, pp. 3391–3407, 2010.
  • [24] C. Patriarca, S. Lambot, M. R. Mahmoudzadeh, J. Minet, and E. Slob, “Reconstruction of sub-wavelength fractures and physical properties of masonry media using full-waveform inversion of proximal penetrating radar”, J. of Appl. Geophys., vol. 74, no. 1, pp. 26–37, 2011.
  • [25] T. J. Cui, W. C. Chew, A. A. Aydiner, and S. Chen, “Inverse scattering of two-dimensional dielectric objects buried in a lossy earth using the distorted Born iterative method”, IEEE Trans. on Geosci. and Remote Sensing, vol. 39, no. 2, pp. 339–346, 2001.
  • [26] C. Estatico, M. Pastorino, and A. Randazzo, “A novel microwave imaging approach based on regularization in Lp Banach spaces”, IEEE Trans. on Antenn. and Propag., vol. 60, no. 7, pp. 3373–3381, 2012.
  • [27] C. Estatico, M. Pastorino, and A. Randazzo, “An inexact-Newton method for short-range microwave imaging within the second-order Born approximation”, IEEE Trans. on Geosci. and Remote Sensing, vol. 43, no. 11, pp. 2593–2605, 2005.
  • [28] H. Harada, D. J. N. Wall, T. Takenaka, and M. Tanaka, “Conjugate gradient method applied to inverse scattering problem”, IEEE Trans. on Antenn. and Propag., vol. 43, no. 8, pp. 784–792, 1995.
  • [29] T. Isernia, V. Pascazio, and R. Pierri, “A nonlinear estimation method in tomographic imaging”, IEEE Trans. on Geosci. and Remote Sensing, vol. 35, no. 4, pp. 910–923, 1997.
  • [30] P. M. van den Berg and A. Abubakar, “Contrast source inversion method: state of art”, Progress in Electromag. Res., vol. 34, pp. 189–218, 2001.
  • [31] T. Isernia, V. Pascazio, and R. Pierri, “On the local minima in a tomographic imaging technique”, IEEE Trans. on Geosci. and Remote Sensing, vol. 39, no. 7, pp. 1596–1607, 2001.
  • [32] Y. Rahmat-Samii and E. Michielssen, Eds., Electromagnetic Optimization by Genetic Algorithms, 1st ed. New York, NY: Wiley, 1999.
  • [33] M. Pastorino, “Stochastic optimization methods applied to microwave imaging: a review”, IEEE Trans. on Antenn. and Propag., vol. 55, no. 3, pp. 538–548, 2007.
  • [34] A. Randazzo, “Swarm optimization methods in microwave imaging”, International Journal of Microwave Science and Technology, vol. 2012, Article ID 491713, 2012.
  • [35] M. Slaney, A. C. Kak, and L. E. Larsen, “Limitations of imaging with first-order diffraction tomography”, IEEE Trans. on Microw. Theory and Techniq., vol. 32, no. 8, pp. 860–874, 1984.
  • [36] F. Soldovieri and R. Solimene, “Ground penetrating radar subsurface imaging of buried objects”, in Radar Technology, G. Kouemou, Ed. InTech, 2010.
  • [37] T. B. Hansen and P. M. Johansen, “Inversion scheme for ground penetrating radar that takes into account the planar air-soil interface”, IEEE Trans. on Geosci. and Remote Sensing, vol. 38, no. 1, pp. 496–506, 2000.
  • [38] M. Fink, “Time reversal of ultrasonic fields. I. Basic principles”, IEEE Trans. on Ultrasonics, Ferroelec., and Frequen. Control, vol. 39, no. 5, pp. 555–566, 1992.
  • [39] C. Cafforio, C. Prati, and F. Rocca, “SAR data focusing using seismic migration techniques”, IEEE Trans. on Aerospace and Elec. Syst., vol. 27, no. 2, pp. 194–207, 1991.
  • [40] D. Colton, K. Giebermann, and P. Monk, “A regularized sampling method for solving three-dimensional inverse scattering problems”, SIAM J. on Scient. Comput., vol. 21, no. 6, pp. 2316–2330, 2000.
  • [41] E. A. Marengo, F. K. Gruber, and F. Simonetti, “Time-reversal MUSIC imaging of extended targets”, IEEE Trans. on Image Process., vol. 16, no. 8, pp. 1967–1984, 2007.
  • [42] M. Salucci, L. Poli, N. Anselmi, and A. Massa, “Multifrequency particle swarm optimization for enhanced multiresolution GPR microwave imaging”, IEEE Trans. on Geosci. and Remote Sensing, vol. 55, no. 3, pp. 1305–1317, 2017.
  • [43] M. Salucci, L. Poli, and A. Massa, “Advanced multi-frequency GPR data processing for non-linear deterministic imaging”, Signal Process., vol. 132, pp. 306–318, 2017.
  • [44] M. Salucci, G. Oliveri, and A. Massa, “GPR prospecting through an inverse-scattering frequency-hopping multifocusing approach”, IEEE Trans. on Geosci. and Remote Sensing, vol. 53, no. 12, pp. 6573–6592, 2015.
  • [45] M. Salucci, G. Oliveri, A. Randazzo, M. Pastorino, and A. Massa, “Electromagnetic subsurface prospecting by a fully nonlinear multifocusing inexact Newton method”, J. of the Opt. Soc. of America A, vol. 31, no. 12, pp. 2618–2629, 2014.
  • [46] L. Poli, G. Oliveri, P. P. Ding, T. Moriyama, and A. Massa, “Multifrequency Bayesian compressive sensing methods for microwave imaging”, J. of the Opt. Soc. of America A, vol. 31, no. 11, pp. 2415–2428, 2014.
  • [47] A. Massa, P. Rocca, and G. Oliveri, “Compressive sensing in electromagnetics - a review”, IEEE Antenn. and Propag.n Mag., vol. 57, no. 1, pp. 224–238, 2015.
  • [48] M. Ambrosanio and V. Pascazio, “A compressive-sensing-based approach for the detection and characterization of buried objects”, IEEE J. of Selec.Topics in Appl. Earth Observ. and Remote Sensing, vol. 8, no. 7, pp. 3386–3395, 2015.
  • [49] C. Estatico, A. Fedeli, M. Pastorino, and A. Randazzo, “Buried object detection by means of a Lp Banach-space inversion procedure”, Radio Science, vol. 50, no. 1, pp. 41–51, 2015.
  • [50] C. Estatico, A. Fedeli, M. Pastorino, and A. Randazzo, “A multifrequency inexact-Newton method in Lp Banach spaces for buried objects detection”, IEEE Trans. on Antenn. and Propag., vol. 63, no. 9, pp. 4198–4204, 2015.
  • [51] I. Catapano, A. Affinito, G. Gennarelli, F. d. Maio, A. Loperte, and F. Soldovieri, “Full three-dimensional imaging via ground penetrating radar: assessment in controlled conditions and on field for archaeological prospecting”, Appl. Phys. A, vol. 115, no. 4, pp. 1415–1422, 2013.
  • [52] I. Catapano, L. Crocco, Y. Krellmann, G. Triltzsch, and F. Soldovieri, “Tomographic airborne ground penetrating radar imaging: Achievable spatial resolution and on-field assessment”, ISPRS J. of Photogramm. and Remote Sensing, vol. 92, pp. 69–78, 2014.
  • [53] R. Solimene, G. Leone, and A. Dell’Aversano, “MUSIC algorithms for rebar detection”, J. of Geophys. and Engin., vol. 10, no. 6, p. 064006, 2013.
  • [54] I. Catapano, L. Crocco, and T. Isernia, “Improved sampling methods for shape reconstruction of 3-D buried targets”, IEEE Trans. on Geosci. and Remote Sensing, vol. 46, no. 10, pp. 3265–3273, 2008.
  • [55] L. Di Donato, M. T. Bevacqua, L. Crocco, and T. Isernia, “Inverse scattering via virtual experiments and contrast source regularization”, IEEE Trans. on Antenn. and Propag., vol. 63, no. 4, pp. 1669–1677, 2015.
  • [56] L. Di Donato and L. Crocco, “Model-based quantitative crossborehole GPR imaging via virtual experiments”, IEEE Trans. on Geosc. and Remote Sensing, vol. 53, no. 8, pp. 4178–4185, 2015.
  • [57] A. Sahin and E. L. Miller, “Object detection using high resolution near-field array processing”, IEEE Trans. on Geosci. and Remote Sensing, vol. 39, no. 1, pp. 136–141, 2001.
  • [58] S. Meschino, L. Pajewski, M. Pastorino, A. Randazzo, and G. Schettini, “Detection of subsurface metallic utilities by means of a SAP technique: Comparing MUSIC- and SVM-based approaches”, J. of Appl. Geophys., vol. 97, pp. 60–68, 2013.
  • [59] S. Meschino, L. Pajewski, and G. Schettini, “A SAP-DoA method for the localization of two buried objects”, Int. J. of Antenn. and Propag., vol. 2013, Article ID e702176, pp. 1–10, 2013 (doi: 10.1155/2013/702176).
  • [60] E. Bermani, A. Boni, S. Caorsi, and A. Massa, “An innovative realtime technique for buried object detection”, IEEE Trans. on Geosci. and Remote Sensing, vol. 41, no. 4, pp. 927–931, 2003.
  • [61] R. Solimene, A. Cuccaro, A. Dell’Aversano, I. Catapano, and F. Soldovieri, “Background removal methods in GPR prospecting”, in Proc. Eur. Radar Conf. EuRAD 2013, Nuremberg, Germany, 2013, pp. 85–88.
  • [62] S. Antonijevic and D. Poljak, “A novel time-domain reflection coefficient function: TM case”, IEEE Trans. on Electromag. Compatibil., vol. 55, no. 6, pp. 1147–1153, 2013.
  • [63] C. Le Bastard, Y. Wang, V. Baltazart, and X. D´erobert, “Time delay and permittivity estimation by ground-penetrating radar with support vector regression”, IEEE Geosci. and Remote Sensing Lett., vol. 11, no. 4, pp. 873–877, 2014.
  • [64] M. Sun, N. Pinel, C. L. Bastard, V. Baltazart, A. Ihamouten, and Y. Wang, “Time delay and surface roughness estimation by subspace algorithms for pavement survey by radar”, in 7th Int. Worksh. on Adv. Ground Penetrating Radar IWAGPR 2013, Nantes, France, 2013, pp. 1–6.
  • [65] A. Di Matteo, E. Pettinelli, and E. Slob, “Early-time GPR signal attributes to estimate soil dielectric permittivity: A theoretical study”, IEEE Trans. on Geosci. and Remote Sensing, vol. 51, no. 3, pp. 1643–1654, 2013.
  • [66] N. Gueting, A. Klotzsche, J. van der Kruk, J. Vanderborght, H. Vereecken, and A. Englert, “Imaging and characterization of facies heterogeneity in an alluvial aquifer using GPR full-waveform inversion and cone penetration tests”, J. of Hydrology, vol. 524, pp. 680–695, 2015.
  • [67] A. R. Mangel, S. M. J. Moysey, and J. van der Kruk, “Resolving precipitation induced water content profiles by inversion of dispersive GPR data: A numerical study”, J. of Hydrology, vol. 525, pp. 496–505, 2015.
  • [68] S. Lambot, E. C. Slob, I. van den Bosch, B. Stockbroeckx, and M. Vanclooster, “Modeling of Ground-Penetrating Radar for accurate characterization of subsurface electric properties”, IEEE Trans. on Geosci. and Remote Sensing, vol. 42, no. 11, pp. 2555–2568, 2004.
  • [69] F. Andr´e and S. Lambot, “Intrinsic modeling of near-field electromagnetic induction antennas for layered medium characterization. IEEE Trans. on Geosci. and Remote Sensing, vol. 52, no. 11, pp. 7457–7469, 2014.
  • [70] F. Soldovieri, O. Lopera, and S. Lambot, “Combination of advanced inversion techniques for an accurate target localization via GPR for demining applications”, IEEE Trans. on Geosci. and Remote Sensing, vol. 49, no. 1, pp. 451–461, 2011.
  • [71] A. P. Tran, F. Andr´e, and S. Lambot, “Validation of near-field Ground-Penetrating Radar modeling using full-wave inversion for soil moisture estimation”, IEEE Trans. on Geosci. and Remote Sensing, vol. 52, no. 9, pp. 5483–5497, 2014.
  • [72] A. De Coster, A. P. Tran, and S. Lambot, “Fundamental analyses on layered media reconstruction using GPR and full-wave inversion in near-field conditions”, IEEE Trans. on Geosci. and Remote Sensing, vol. 54, no. 9, pp. 5143–5158, 2016.
  • [73] L. Pajewski, “The open database of experimental and synthetic GPR radargrams”, COST Action TU1208, 2016 [Online]. Available: http://gpradar.eu/onewebmedia/TU1208%20TS%20Split%20%20Pajewski%20-%20Database%20of%20radargrams.pdf
  • [74] “GPR imaging challenge”, 9th Int. Worksh. on Advanced Ground Penetrating Radar IWAGPR 2017, Edinburgh, Scotland, 2017 [Online]. Available: https://github.com/gprMax/iwagpr2017-model
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-86f7f3c6-5bb2-462e-ba9c-271dabfeed19
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.