PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Conformational Analysis, Substituent Effect and Structure activity Relationships of 16-Membered Macrodiolides

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Electronic structures, Conformational Analysis, effect of the substitution and structure activity Relationships for macrodiolides, have been studied by PM3 and ab initio methods. In the present work, the calculated values, namely net charges, bond lengths, MESP, dipole moments, electron-affinities, heats of formation, drug-likeness and QSAR properties, are reported and discussed in terms of the biological activity of macrodiolides.
Rocznik
Strony
146--167
Opis fizyczny
Bibliogr. 78 poz., rys., tab., wykr., wz.
Twórcy
autor
  • Group of Computational and Pharmaceutical Chemistry, LMCE Laboratory, Department of Chemistry, Faculty of Sciences, University of Biskra, 07000, Biskra, Algeria
autor
  • Group of Computational and Pharmaceutical Chemistry, LMCE Laboratory, Department of Chemistry, Faculty of Sciences, University of Biskra, 07000, Biskra, Algeria
autor
  • Group of Computational and Pharmaceutical Chemistry, LMCE Laboratory, Department of Chemistry, Faculty of Sciences, University of Biskra, 07000, Biskra, Algeria
autor
  • VTRS Laboratory, Faculty of Sciences and Technology, University of El-Oued, B.P. 789, 39000, El-Oued, Algeria
Bibliografia
  • [1] E.M. Driggers, S.P. Hale, J. Lee, N.K. Terrett, Nat. Rev. Drug Discov. 7(2008) 608-624.
  • [2] J. Mallinson, I. Collins, Fut. Med. Chem. 4 (2012) 1409-1438.
  • [3] E. J. Kang, E. Lee, Chem. Rev. 105 (2005) 4348-4378.
  • [4] S. Muthusamy, M. Sivaguru, Tetrahedron. Lett 54 (2013) 6810-6813.
  • [5] (a) P. Magiatis, D. Spanakis, S. Mitaku, E. Tsitsa, A. Mentis, C.J. Harvala, Nat. Prod. 64 (2001)1093-1094; (b) Y. Minami, K. Yoshida, R. Azuma, M. Nishii, J. Inagaki, F. Nohara. Tetrahedron. Lett. 33 (1992) 7373-7376; (c) T. Ishida, Y. In, M. Nishii, Y. Minami, Chem. Lett. (1994) 1321-1322 ; (d) C. Christner, G. Kullertz, G. Fischer, M. Zerlin, S. Grabley, R. Thiericke, A. Taddei, A.J. Zeeck, Antibiot. 51 (1998) 368-371.
  • [6] (a) E. M. Driggers, S. P. Hale, J. Lee, N. K. Terrett, Nat. Rev. Drug Disc. 7 (2007) 608-624; (b) E. Marsault, M. L. Peterson, J. Med. Chem. 54 (2011) 1961-2004.
  • [7] D. F. Veber, S. R. Johnson, H.-Y. Cheng, B. R. Smith, K. W. Ward, K. D. Kopple, J. Med. Chem. 45 (2002) 2615-2623.
  • [8] S. Omura, Macrolide Antibiotics: Chemistry, Biology and Practice; Academic: New York, 1984, 538.
  • [9] J. S. Yadav, U. V. Subba Reddy, B. V. Subba Reddy, Tetrahedron. Letters 50 (2009) 5984-5986.
  • [10] J. G. Topliss, Perspect. Drug. Discov. Des. 1 (1993) 253.
  • [11] W. Zhigao, W. Fangqiang, Su. Changhua, Z. Yongling, J. Comput. Theor. Nanosci. 10 (2013) 2323-2327.
  • [12] A. Eghdami, M. Monajjemi, Quantum Matter 2 (2013) 324-331.
  • [13] Y. Chen, Di. Xu, M.Yang, J. Comput. Theor. Nanosci. 10 (2013) 2916-2919.
  • [14] B. Wu, X. Kong, Z. Cao, Y. Pan, Y. Ren, Y. Li, Q. Yang, and F. Lv, J. Comput. Theor. Nanosci. 10(2013) 2403-2410.
  • [15] M. Ciobanu, L. Preda, D. Savastru, R. Savastru, E. M. Carstea, Quantum. Matter. 2 (2013) 60.
  • [16] S. Anurag, J. Srashti, A. K. Nagawat, Quantum. Matter. 2 2013) 469-473.
  • [17] A. Srivastava, N. Saraf, A. K. Nagawat, Quantum. Matter. 2 (2013) 401-407.
  • [18] A. Srivastava, N. Jain, A. K. Nagawat, Quantum. Matter. 2 (2013) 307-313.
  • [19] M. Joydeep, Ch. Raja, S. Saikat, V. Anjay, De. Biplab, T. K. Ravi, Der. Pharma. Chemica 1(2) (2009) 188-198.
  • [20] HyperChem (Molecular Modeling System) Hypercube, Inc. USA, (2007).
  • [21] J. J. P. Stewart, J. Comput. Chem. 10 (1989) 221-264.
  • [22] S. Belaidi, M. Laabassi, R. Gree, A. Botrel. Scientific Study & Research 4 (2003) 27-38.
  • [23] S. Belaidi, N. Melkemi, Asian Journal of Chemistry 25 (2013) 4527-4531
  • [24] I. Fleming, Frontier Orbitals and Organic Chemical Reactions (John Wiley and Sons, NewYork, 1976, 5-27.
  • [25] J. S. Murray, K. Sen, Molecular Electrostatic Potentials, Concepts and Applications Elsevier, Amsterdam, 1996.
  • [26] I. Alkorta, J. J. Perez, Int. J. Quant. Chem. 57 (1996) 123.
  • [27] E. Scrocco, J. Tomasi, Adv. Quantum Chem. 11 (1978) 115.
  • [28] F. J. Luque, M. Orozco, P. K. Bhadane, S. R. Gadre, J. Phys. Chem. 97 (1993) 9380.
  • [29] J. Sponer, P. Hobza, Int. J. Quant. Chem. 57 (1996) 959.
  • [30] G. L. Miessler., D. A. Tarr. Inorganic. Chemistry, 2nd ed, Prentice-Hall Upper Saddle River, NJ, USA. (1999).
  • [31] R. P. Verma, A. Kurup, C. Hansch, Bioorganic & Medicinal Chemistry 13 (2005) 237-255.
  • [32] W. J. Lyman, Rosenblatt, Eds.; American Chemical Society: Washington. DC., 1-1-1-51, (1990).
  • [33] A. Sabljic, H. Guesten, J. Hermens, A. Opperhuizen, Environmental Science & Technology 27 (1993) 1394-1402.
  • [34] C. Hansch, A. J. Leo, Wiley: New York, (1979).
  • [35] T. Suzuki, Y. Kudo, Journal of Computer-Aided Molecular Design 4 (1990) 155-198.
  • [36] A. Khalafi-Nezhad, M. N. Soltani Rad, H. Mohabatkar, Z. Asrari, B. Hemmateenejad, Bioorg. Med. Chem. 13 (2005) 1931-1938.
  • [37] H. Liu, Y.-M. Du, J. F. Kennedy, Carbohydrate. Polymers. 68 (2007) 598-600.
  • [38] G. E. Chudinov, D. V. Napolov, M. V. Basilevsky, Chemical. Physics 160 (1992) 41-54.
  • [39] P. D. Leeson, A. M. Davis, J. Med. Chem. 47 (2004) 6338-6348.
  • [40] M. Yadav, Bioinformation 7 (2011) 388-392.
  • [41] L. K. Ojha, Ajay M. Chaturvedi, A. Bhardwaj, M. Thakur,A. Thakur, IJPAC 3(4) (2013) 417-427.
  • [42] M. Yadav, Bioinformation .,7(8) (2011) 388-392.
  • [43] S. Winiwarter, N. M. Bonham, F. Ax, A. Hallberg, H. Lennerna¨s, A.Karlen, J. Med. Chem. 41 (1998) 4939-4949.
  • [44] P. Artursson, J. Karlsson, Biochem. Biophys. Res. Commun. 175 (1991) 880-885.
  • [45] R. C. Young, R. C. Mitchell, Th. H. Brown, C. R. Ganellin, R. Griffiths, M. Jones, K. K. Rana, D. Saunders, I. R. Smith, N. E.Sore, T. J. Wilks, J. Med. Chem. 31 (1988) 656-671.
  • [46] H. Van de Waterbeemd, G. Camenisch, G. Folkers, J. R. Chre´tien, O. A. Raevsky, J. Drug. Target. 2 (1998) 151-165.
  • [47] D. A. Smith, B. C. Jones, D. K. Walker, Med. Res. Rev. 16 (1996) 243-266.
  • [48] H. Pajouhesh, G. R. Lenz, Neurotherapeutics 2 (2005) 541.
  • [49] R. Panchagnula , N. S. Thomas, Int. J. Pharm. 201 (2000) 131-150. [48] P. Lalitha, S. Sivakamasundari, Orient. J. Chem. 26(1) (2010) 135-141
  • [50] J. Wang, X.Q. Xie, T. Hou, X. Xu, Fast J. Phys. Chem. A. 24;111(20) (2007) 4443-4448.
  • [51] S. Lanners, H. Norouzi-Arasi, Xavier J. Salom-Roig, G. Hanquet , A. Chemie 119 (2007) 7216-7219.
  • [52] A. Gavezzotti, J. Am. Chem. Soc. 105 (1983) 5220-5225.
  • [53] O. Germay, N. Kumar, Eric. J. Thomas, Tetrahedron. Lett, 42, 30, 23 (2001) 4969-4974.
  • [54] H. R. Jois, A. Sarkar, S. Gurusiddaiah, Antimicrob. Agents Chemother 30(3) (1986) 458.
  • [55] T. K. Chakraborty, V. R. Reddy, A. Kumar, Tetrahedron. Lett, 47, 42 (2006) 7435-7438.
  • [56] O. Kattnig, E. Furstner, J. Am. Chem. Soc. 126 (2004) 15970-15971.
  • [57] S. Amigoni, Y. Le Floc'h, Tetrahedron: Asymmetry, 8, 16 (1997) 2827-2831.
  • [58] J. Gailliard, Synthese formelle de la pyrenophorine, Thèse de doctorat en Chimie; université de Rouen.(1990).
  • [59] A. Noda, S. Aoyagi, N. Machinaga, Ch. Kibayashi, Tetrahedron. Lett. 35, 44 (1994) 8237-8240.
  • [60] I. Paterson, J. Man. Tetrahedron. Lett, 38, 4 (1997) 695-698.
  • [61] R. Barth, J. Mulzer ,Tetrahedron. 64, 21 (2008) 4718-4735.
  • [62] S. Belaidi, M. Omari , J. Soc. Alger. Chim. 10 (2000) 31-40,
  • [63] S. Belaidi, M. Omari et A. Dibi, J. Soc. Alger. Chim. 10(2) (2000) 221.
  • [64] S. Belaidi, A. Dibi, M. Omari, Turk. J. Chem. 26 (2002) 491-500.
  • [65] S. Belaidi, M. Omari, T. Lanez, A. Dibi, J. Soc. Alger. Chim. 14 (2004) 27-39
  • [66] S. Belaidi., T. Lanez, M. Omari, A. Botrel. Asian J. Chem. 17 (2005) 859-870.
  • [67] S. Belaidi, M. Laabassi, R. Gree, A. Botrel, Rev. Roum. Chim. 50 (2005) 759-765.
  • [68] S. Belaidi, D. Harkati, ISRN Organic Chemistry, (2011) 594242.
  • [69] E. H. Kerns, L. Di, Academic. Press, USA. (2008) 43-47.
  • [70] V. Pliska, B. Testa, H. van de Waterbeemd, R. Mannhold, H. Kubinyi, H. Timmerman, Lipophilicity in Drug Action and Toxicology, Wiley-VCH, Federal Republic of Germany (1996).
  • [71] B. Yavorski, A. Detlaf, Checklist of Physics. 1980, 376.
  • [72] TAMMO Theoretical Analysis of Molecular Membrane Organization, CRC Press, Boca Raton, Florida, USA (1995).
  • [73] Deleu M Synthesis of Surfactin Derivatives and Study Their Properties, Thesis Ph.D, FUSAGX, Belgique (2000).
  • [74] L. B. Kier, Molecular Orbital Theory in Drug Research, Academic Press. New York. NY. USA (1981).
  • [75] E. H. Kerns, L. Di, Drug-like Properties: Concepts, Structure Design and Methods: from ADME to Toxicity Optimization, Academic Press, USA, (2008) 43-47.
  • [76] Ch. A. Lipinski, Franco Lombardo, B. W. Dominy, P. J. Feeney, Adv. Drug Deliv. Rev. 64 (2012) 4-17.
  • [77] G. Vistoli, A. Pedretti, B. Testa, Drug. Discov. Today. 13(7-8) (2008) 285-294.
  • [78] C. A. Lipinski, F. Lombardo, B. Dominy, W. P. J. Feeney. Adv. Drug. Deliv. Rev. 23 (1997) 3-25.
Uwagi
Na stronie artykułu błędna numeracja bibliografii
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-86f7bb4d-4c71-4ece-b5c7-cbd92127c267
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.