PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

PM 2.5 modelling during paddy stubble burning months using artificial intelligence techniques

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: In this study, the artificial intelligence techniques namely Artificial Neural Network, Random Forest, and Support Vector Machine are employed for PM 2.5 modelling. The study is carried out in Rohtak city of India during paddy stubble burning months i.e., October and November. The different models are compared to check their respective efficacies and also sensitivity analysis is performed to know about the most vital parameter in PM 2.5 modelling. Design/methodology/approach: The air pollution data of October and November months from the year 2016 to 2020 was collected for the study. The months of October and November are chosen as paddy stubble burning and major festivities using fireworks occur during these months. The untoward data entries viz. zero values, blank data, etc. were eliminated from the gathered data set and thereafter 231 observations of each parameter were left for the conduct of the presented study. The different models i.e., ANN, RF, SVM, etc. had PM 2.5 as an output variable while relative humidity, sulfur dioxide, nitrogen dioxide, nitric oxide, carbon monoxide, ozone, temperature, solar radiation, wind direction and wind speed acted as input variables. The prototypes created from the training data set are verified on the testing data set. A sensitivity analysis is also done to quantify impact of various parameters on output variable i.e., PM 2.5. Findings: The performance of the SVM_RBF based model turned out to be the best with the performance parameters being the coefficient of determination, root mean square error, and mean absolute error. In the sensitivity test, sulphur dioxide (SO2) was adjudged as the most vital variable. Research limitations/implications: The quantification capacity of the generated models may go beyond the used data set of observations. Practical implications: The artificial intelligence techniques provide precise estimation and forecasting of PM 2.5 in the air during paddy stubble burning months of October and November. Originality/value: Unlike the past research work that focus on modelling of various air pollution parameters, this study in specific focuses on the modelling of most vital air pollutant i.e., PM 2.5 that too specifically during the paddy stubble burning months of October and November when the air pollution is at its peak in northern India.
Rocznik
Strony
16--26
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Civil Engineering, National Institute of Technology Kurukshetra, India
autor
  • Department of Civil Engineering, National Institute of Technology Kurukshetra, India
Bibliografia
  • 1. J. Yang, Q. Yu, P. Gong, Quantifying air pollution removal by green roofs in Chicago, Atmospheric Environment 42/31 (2008) 7266-7273. DOI: https://doi.org/10.1016/j.atmosenv.2008.07.003
  • 2. Y.-F. Xing, Y.-H. Xu, M.-H. Shi, Y.-X. Lian, The impact of PM 2. 5 on the human respiratory system, Journal of Thoracic Disease 8/1 (2016) E69-E74. DOI: https://doi.org/10.3978/j.issn.2072-1439.2016.01.19
  • 3. A.G. Barnett, G.M. Williams, J. Schwartz, A.H. Neller, T.L. Best, A.L. Petroeschevsky, R.W. Simpson, Air pollution and child respiratory health: a case-crossover study in Australia and New Zealand, American Journal of Respiratory and Critical Care Medicine 171/11 (2005) 1272-1278. DOI: https://doi.org/10.1164/rccm.200411-1586OC
  • 4. P.A. Aguilera, A. Fernández, R. Fernández, R. Rumí, A. Salmerón, Bayesian networks in environmental modelling, Environmental Modelling and Software 26/12 (2011) 1376-1388. DOI: https://doi.org/10.1016/j.envsoft.2011.06.004
  • 5. Minidisk Infiltrometer User’s Manual, Decagon Devices, Inc., Pullman, WA, USA, 2014.
  • 6. C.E. Rasmussen, C.K. Williams, Gaussian processes for machine learning, Vol. 1, MIT Press, Cambridge, Massachusetts, 2006.
  • 7. H. Wati, P. Lestari, A. Sofyan, A Contribution black carbon (BC) in PM2. 5 from rice straw open burning in district Cianjur, West Java, Indonesia, Proceeding of the 4th Asian Academic Society International Conference “AASIC”, Nakhon Pathom, 2016, 575-583.
  • 8. A. Parsaie, H. Yonesi, S. Najafian, Prediction of flow discharge in compound open channels using adaptive neuro fuzzy inference system method, Flow Measurement and Instrumentation 54 (2017) 288-297. DOI: https://doi.org/10.1016/j.flowmeasinst.2016.08.013
  • 9. A.H. Zaji, H. Bonakdari, B. Gharabaghi, Reservoir water level forecasting using group method of data handling, Acta Geophysica 66/4 (2018) 717-730. DOI: https://doi.org/10.1007/s11600-018-0168-4
  • 10. U. Schlink, O. Herbarth, M. Richter, S. Dorling, G. Nunnari, G. Cawley, E. Pelikan, Statistical models to assess the health effects and to forecast ground-level ozone, Environmental Modelling and Software 21/4 (2006) 547-558. DOI: https://doi.org/10.1016/j.envsoft.2004.12.002
  • 11. Central Pollution Control Board: central control room for air quality management - al India. Available online: https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing/data (accessed in: 22 March 2021)
  • 12. H. Emami, M. Sorafa, M.R. Neyshabouri, Evaluation of hydraulic conductivity at inflection point of soil moisture characteristic curve as a matching point for some soil unsaturated hydraulic conductivity models, Journal of Science and Technology of Agriculture and Natural Resources 15/59 (2012) 169-182.
  • 13. L. Breiman, Random Forests - Random Features, Technical Report 567, University of California Berkeley, 1999, 1-28.
  • 14. L. Breiman, J. Friedman, C.J. Stone, R.A. Olshen, Classification and regression trees, CRC Press, Boca Raton, Florida, 1984.
  • 15. R.D. Peng, F. Dominici, R. Pastor-Barriuso, S.L. Zeger, J.M. Samet, Seasonal analyses of air pollution and mortality in 100 US cities, American Journal of Epidemiology 161/6 (2005) 585-594. DOI: https://doi.org/10.1093/aje/kwi075
  • 16. G.D. Rolph, R.R. Draxler, A.F. Stein, A. Taylor, M.G. Ruminski, S. Kondragunta, P.M. Davidson, Descrition and verification of the NOAA smoke forecasting system: the 2007 fire season, Weather and Forecasting 24/2 (2009) 361-378. DOI: https://doi.org/10.1175/2008WAF2222165.1
  • 17. R. Gupta, Causes of emissions from agricultural residue burning in north-west India: evaluation of a technology policy response, South Asian Network For Development And Environmental Economics, 2012.
  • 18. A.F. Mashaly, A.A. Alazba, Assessing the accuracy of ANN, ANFIS, and MR techniques in forecasting productivity of an inclined passive solar still in a hot, arid environment, Water SA 45/2 (2019) 239-250. DOI: https://doi.org/10.4314/wsa.v45i2.11
  • 19. R.S. Govindaraju, Task committee on application of artificial neural networks in hydrology, artificial neural networks in hydrology. ii: hydrologic application, Journal of Hydrologic Engineering 5/2 (2000) 124-136. DOI: https://doi.org/10.1061/(ASCE)1084-0699(2000)5:2(124)
  • 20. A.J. Smola, B. Schölkopf, A tutorial on support vector regression. Statistics and Computing 14/3 (2004) 199-222. DOI: https://doi.org/10.1023/B:STCO.0000035301.49549.88
  • 21. D.P. Solomatine, Y. Xue, M5 model trees and neural networks: application to flood forecasting in the upper reach of the Huai River in China, Journal of Hydrologic Engineering 9/6 (2004) 491-501. DOI: https://doi.org/10.1061/(ASCE)1084-0699(2004)9:6(491)
  • 22. C. Cortes, V. Vapnik, Support vector networks, Machine Learning 20 (1995) 273-297. DOI: https://doi.org/10.1007/BF00994018
  • 23. S. Heddam, Modelling hourly dissolved oxygen concentration (DO) using dynamic evolving neural-fuzzy inference system (DENFIS)-based approach: case study of Klamath River at Miller Island Boat Ramp, OR, USA, Environmental Science and Pollution Research 21/15 (2014) 9212-9227. DOI: https://doi.org/10.1007/s11356-014-2842-7
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-86f2e617-c142-4ec5-ad3d-13d5e6f951d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.