PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Low-Frequency Sound Absorption Potential of Subwavelength Absorbers Based on Coupled Micro-Slit Panels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to space limitations during installation, reducing low-frequency noise has always been a challenging area. Sub-wavelength structures are typically favored in such scenarios for noise reduction. This paper explores the potential of micro-slit panels (MSP) for low-frequency sound absorption. To further optimize the panel thickness, coupled MSPs (CMSP) with a distance between two MSPs of less than 1 mm are proposed. Firstly, the low-frequency absorption performances of a single MSP based on two optimized schemes – the cavity-depth optimal scheme (COS) and the panel thickness optimal scheme (TOS) – are examined and compared with those of existing ultrathin metamaterials. The results demonstrate that MSP has significant potential for low frequency sound absorption, and COS allows for a smaller overall structural thickness but a larger panel thickness than TOS. Secondly, to reduce the panel thickness, the CMSP is developed and the theoretical model of its acoustic impedance is established and validated by experiments. Then, based on the theoretical model, the low-frequency absorption potential of CMSP is optimized using COS. The results show that both the overall thickness and the panel thickness of the CMSP absorber are reduced while maintaining better performance. Furthermore, the proposed absorber achieves a subwavelength scale since its total thickness can be as small as 0.138λ.
Rocznik
Strony
121--128
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
  • College of Information Science and Engineering, Hohai University Changzhou, China
  • College of Information Science and Engineering, Hohai University Changzhou, China
autor
  • College of Information Science and Engineering, Hohai University Changzhou, China
Bibliografia
  • 1. Allard J.F., Atalla N. (2009), Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials, Wiley, Chichester, doi: 10.1002/9780470747339.
  • 2. Almeida G.N., Erasmo F.V., Barbosa L.R., Lenzi A., Birch R.S. (2021a), Sound absorption metasurface with symmetrical coiled spaces and micro slit of variable depth, Applied Acoustics, 183: 108312, doi: 10.1016/j.apacoust.2021.108312.
  • 3. Almeida G.N., Vergara E.F., Barbosa L.R., Brum R. (2021b), Low-frequency sound absorption of a metamaterial with symmetrical-coiled-up spaces, Applied Acoustics, 172: 107593, doi: 10.1016/j.apacoust.2020.107593.
  • 4. Cai X.B., Guo Q.Q., Hu G.K., Yang J. (2014), Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonator, Applied Physics Letters, 105: 121901, doi: 10.1063/1.4895617.
  • 5. Cheng Y., Zhou C., Yuan B.G., Wu D.J., Wei Q., Liu X.J. (2015), Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial Mie resonances, Nature Mater, 14: 1013-1019, doi: 10.1038/nmat4393.
  • 6. Chong Y., Ge L., Cao H., Stone A.D. (2010), Coherent perfect absorbers: Time-reversed lasers, Physical Review Letters, 105(5): 053901, doi: 10.1103/PhysRevLett.105.053901.
  • 7. Donda K., Zhu Y., Fan S.-W., Cao L., Li Y., Assouar B. (2019), Extreme low-frequency ultrathin acoustic absorbing metasurface, Applied Physics Letter, 115(17): 173506, doi: 10.1063/1.5122704.
  • 8. Jiménez N., Romero-García V., Pagneux V., Groby J.-P. (2017a), Quasi-perfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound, Physical Review Journals, 957: 014205, doi: 10.1103/Phys RevB.95.014205.
  • 9. Jiménez N., Romero-García V., Pagneux V., Groby J.-P. (2017b), Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems, Scientific Reports, 7: 13595, doi: 10.1038/s41598-017-13706-4.
  • 10. Jiménez N., Huang W., Romero-García V., Pagneux V., Groby J.-P. (2016), Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption, Applied Physics Letters, 109: 121902, doi: 10.1063/1.4962328.
  • 11. Lara-Valencia L.A., Farbiarz-Farbiarz Y., Valencia-González Y. (2020), Design of a tuned mass damper inerter (TMDI) based on an exhaustive search optimization for structural control of buildings under seismic excitations, Shock and Vibration, 2020: 8875268, doi: 10.1155/2020/8875268.
  • 12. Li Y., Assouar B.M. (2016), Acoustic metasurface-based perfect absorber with deep subwavelength thickness, Applied Physics Letter, 108(6): 063502, doi: 10.1063/1.4941338.
  • 13. Liang Z.X., Li J. (2012), Extreme acoustic metamaterial by coiling up space, Physical Review Journals, 108: 114301, doi: 10.1103/PhysRevLett.108.114301.
  • 14. Liu C.M., Xia B.Z., Yu D.J. (2017), The spiral-labyrinthine acoustic metamaterial by coiling up space, Physics Letters A, 381(36): 3112-3118, doi: 10.1016/j.physleta.2017.07.041.
  • 15. Liu X., Wang C.Q., Zhang Y.M., Huang L.X. (2021a), Investigation of broadband sound absorption of smart micro-perforated panel (MPP) absorber, International Journal of Mechanical Sciences, 199: 106426, doi: 10.1016/j.ijmecsci.2021.106426.
  • 16. Liu Y.Y., Ren S.W., Sun W., Lei Y., Wang H.T., Zeng X.Y. (2021b), Broadband low-frequency sound absorbing metastructures based on impedance matching coiled-up cavity, Applied Physics Letter, 119(10): 101901, doi: 10.1063/5.0061012.
  • 17. Ma G., Sheng P. (2016), Acoustic metamaterials: From local resonances to broad horizons, Science Advances, 2(2): e1501595, doi: 10.1126/sciadv.1501595.
  • 18. Maa D.Y. (1998), Potential of microperforated panel absorber, The Journal of the Acoustical Society of America, 104(5): 2861-2866, doi: 10.1121/1.423870.
  • 19. Maa D.Y. (2000), Theory of microslit absorbers [in Chinese], Acta Acustica, 25(6): 481-485, doi: 10.15949/j.cnki.0371-0025.2000.06.001.
  • 20. Mei J., Ma G., Yang M. (2012), Dark acoustic metamaterials as super absorbers for low-frequency sound, Nature Communications, 3: 756, doi: 10.1038/ncomms1758.
  • 21. Park S.H. (2013), Acoustic properties of microperforated panel absorbers backed by Helmholtz resonators for the improvement of low-frequency sound absorption, Journal of Sound and Vibration, 332(20): 4895-4911, doi: 10.1016/j.jsv.2013.04.029.
  • 22. Pierro V. et al. (2021), Ternary quarter wavelength coatings for gravitational wave detector mirrors: Design optimization via exhaustive search, Physics Review Research, 3(2): 023172, doi: 10.1103/PhysRev Research.3.023172.
  • 23. Randeberg R.T. (2000), Perforated panel absorbers with viscous energy dissipation enhanced by orifice design, Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim.
  • 24. Ryoo H., Jeon W. (2018), Perfect sound absorption of ultra-thin metasurface based on hybrid resonance and space-coiling, Applied Physics Letter, 113(12): 121903, doi: 10.1063/1.5049696.
  • 25. Shen Y., Yang Y., Guo X., Shen Y., Zhang D. (2019), Low-frequency anechoic metasurface based on coiled channel of gradient cross-section, Applied Physics Letter, 114(8): 083501, doi: 10.1063/1.5081926.
  • 26. Vigran T.E. (2014), The acoustic properties of panels with rectangular apertures, The Journal of the Acoustical Society of America, 135(5): 2777-2784, doi: 10.1121/1.4871363.
  • 27. Wang Y., Zhao H.G., Yang H.B., Zhong J., Zhao D., Lu Z.L., Wen J.H. (2018), A tunable sound-absorbing metamaterial based on coiled-up space, Journal of Applied Physics, 123(18): 185109, doi: 10.1063/1.5026022.
  • 28. Wu F., Xiao Y., Yu D.L., Zhao H.G., Wang Y., Wen J.H. (2019), Low-frequency sound absorption of hybrid absorber based on micro-perforated panel and coiled-up channels, Applied Physics Letters, 114: 151901, doi: 10.1063/1.5090355.
  • 29. Wu Y., Liang Q., He J., Feng J., Chen T. (2021), Deep-subwavelength broadband sound absorbing metasurface based on the update finger coiling-up method, Applied Acoustics, 195: 108846, doi: 10.1016/j.apacoust.2022.108846.
  • 30. Xu Z.M., He W., Peng X.G., Xin F.X., Lu T.J. (2020), Sound absorption theory for micro-perforated panel with petal-shaped perforations, The Journal of the Acoustical Society of America, 148(18): 18-24, doi: 10.1121/10.0001462.
  • 31. Zhao H., Wang Y., Wen J., Lam Y.W., Umnova O. (2018), A slim subwavelength absorber based on coupled microslits, Applied Acoustics, 142: 11-17, doi: 10.1016/j.apacoust.2018.08.004.
  • 32. Zhu Y.F., Donda K., Fan S.W., Cao L.Y., Assouar B. (2019), Broadband ultra-thin acoustic metasurface absorber with coiled structure, Applied Physics Express, 12: 114002, doi: 10.7567/1882-0786/ab494a.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-86ec4173-a955-486c-8755-ed94aee47c0b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.