Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
After the rapid increase in the population demography and industrial revolution, many researchers focus on maintaining the balance between the consumption and the production; in this regard, decentralized production plays an important role to achieve this balance, because of its technical economic aspect such as power losses reduction and voltage profile improvement. These advantages can better exploited through the optimal assessment of Distributed Generation (DG). This paper is interested in the study of the optimal location and size of one and multiple DG based on photovoltaic solar sources PV-DG in Radial Distribution Network (RDN) using the Time Varying Acceleration Particle Swarm Optimization Algorithm (TVA-PSO). This algorithm implemented to maximize the Multi-Objective Functions (MOF) based on the Environmental Pollution Reduction Level (EPRL), the Voltage Deviation Level (VDL), Active Power Loss Level (APLL), the Net Saving Level (NSL), and finally the Short Circuit Level (SCL). The proposed method is tested on the standard IEEE 33-, 69-and 118-bus RDN. Outcomes proves that the proposed TVA-PSO is more efficient to solve the optimal allocation of multiple DGs with high convergence rate and minimum power loss reduction.
Czasopismo
Rocznik
Tom
Strony
123--137
Opis fizyczny
Bibliogr. 52 poz., rys., tab., wykr.
Twórcy
autor
- University Freres Mentouri Constantine 1 P.O. Box, 325 Ain El Bey Way, Constantine, Algeria, 25017
autor
- Batna 2 University, 53, Constantine Road, Fesdis, Batna 05078, Algeria
Bibliografia
- [1] Bayod-Rujula A. A.: Future development of the electricity systems with distributed generation. Energy 34, 2009, pp. 377-383.
- [2] El-Khattam W., Salama M. M. A.: Distributed generation technologies, definitions and benefits. Electric Power Systems Research 71, 2004, pp.119-128.
- [3] Pesaran H. A. M., Huy P. D., Ramachandaramurthy V. K.: A review of the optimal allocation of distributed generation: Objectives, constraints, methods, and algorithms. Renewable and Sustainable Energy Reviews 75, 2017, pp. 293- 311.
- [4] Li Y., Feng B, Li G., Qi J., Zhao D., Mu Y.: Optimal distributed generation planning in active distribution networks considering integration of energy storage. Applied Energy 210, 2018, pp. 1073-1081.
- [5] Gopiya Naik S. N., Khatod D. K., Sharma M. P.: Analytical approach for optimal siting and sizing of distributed generation in radial distribution networks. IET Generation. Transmission & Distribution 9 (3), 2015, pp. 209-220.
- [6] Hassan A. A., Fahmy F. H., Nafeh A. A., AbuElmagd M. A.: Genetic single objective optimisation for sizing and allocation of renewable DG systems. International Journal of Sustainable Energy 36 (6), 2017, pp. 545-562.
- [7] Quadr I. A., Bhowmick S., Joshi D.: A hybrid teaching-learning based optimization technique for optimal DG sizing and placement in radial distribution systems. Soft Computing 23 (7), 2019, pp. 1-19.
- [8] Arias N. B., Franco J. F., Lavorato M., Romero R.: Metaheuristic optimization algorithms for the optimal coordination of plug-in electric vehicle charging in distribution systems with distributed generation. Electric Power Systems Research 142, 2017, pp. 351-361.
- [9] Melgar Dominguez 0. D., Kasmaei M. P., Mantovani J. R. S.: Adaptive robust short-term planning of electrical distribution systems considering siting and sizing of renewable energy based DG units. IEEE Transactions on Sustainable Energy 10 (1), 2019, pp. 158-169.
- [10] Ganguly S., Sahoo N. C., Das D.: Multi-objective particle swarm optimization based on fuzzy Paretodominance for possibilistic planning of electrical distribution systems incorporating distributed generation. Fuzzy Sets and Systems 213, 2013, pp. 47-73.
- [11] Hung D. Q., Mithulananthan N., Bansal R. C.: An optimal investment planning framework for multiple distributed generation units in industrial distribution systems. Applied Energy 124, 2014, pp. 62-72.
- [12] P Phonrattanasak: Optimal placement of DG using multiobjective particle swarm optimization. In 2010 international conference on mechanical and electrical technology (pp. 342-346). IEEE.
- [13] Fard H. H., Jalilian A.: Optimal sizing and location of renewable energy based DG units in distribution systems considering load growth. International Journal of Electrical Power & Energy Systems 101, 2018, pp. 356-370.
- [14] Sheng W., Liu K. Y., Liu Y., Meng X., Li Y.: Optimal placement and sizing of distributed generation via an improved non-dominated sorting genetic algorithm II. IEEE Transactions on Power Delivery 30 (2), 2015, pp. 569-578.
- [15] Jabr R. A., Pal B. C.: Ordinal optimisation approach for locating and sizing of distributed generation. IET Generation, Transmission & Distribution 3 (8), 2009, pp. 713-723.
- [16] Hien N. C., Mithulananthan N., Bansal R. C.: Location and sizing of distributed generation units for loadabilty enhancement in primary feeder. IEEE Systems Journal 7 (4), 2013, pp. 797-806.
- [17] Hejazi H. A., Araghi A. R., Vahidi B., Hosseinian S. H., Abedi M., Mohsenian-Rad H.: Independent distributed generation planning to profit both utility and DG investors. IEEE Transactions on Power Systems 28 (2), 2013, pp. 1170-1178.
- [18] Rasid M. M., Murata J., Takano H.: Fossil fuel cost saving maximization: Optimal allocation and sizing of Renewable-Energy Distributed Generation units considering uncertainty via Clonal Differential Evolution. Applied Thermal Engineering 114, 2017, pp. 1424-1432.
- [19] Rabiee A., Mohseni-Bonab S.: M. Maximizing hosting capacity of renewable energy sources in distribution networks: A multi-objective and scenario-based approach. Energy 120, 2017, pp. 417-430.
- [20] Pinto R. S., Unsihuay-Vila C., Fernandes T. S. P.: Multi-objective and multi-period distribution expansion planning considering reliability, distributed generation and selfhealing. IET Generation, Transmission & Distribution 13 (2), 2019, pp. 219-228.
- [21] Saha S., Mukherjee V.: A novel multi-objective chaotic symbiotic organisms search algorithm to solve optimal DG allocation problem in radial distribution system. International Transactions on Electrical Energy Systems 2019, 2019, pp. 1-25.
- [22] Zellagui M., Lasmari A., Alaboudy K., Settoul S., Hassan H. A.: Enhancing energy efficiency for optimal multiple photovoltaic distributed generators integration using inertia weight control strategies in PSO algorithms. Polityka Energetyczna 25, 2022.
- [23] Lasmari A., Zellagui M., Chenni R., Semaoui S., El-Bayeh, C. Z., Hassan, H. A.: Optimal energy management system for distribution systems using simultaneous integration of PV-based DG and DSTATCOM units. Energetika, 66 (1), 2020.
- [24] Parizad A., Baghaee H. R., Yazdani A,: Gharehpetian, G. B. Optimal distribution systems reconfiguration for short circuit level reduction using PSO algorithm. In: PECI 2018. IEEE Power and Energy Conference at Illinois; Champaign, IL, USA, 22-23 February 2018.
- [25] Ameli A., Bahrami S., Khazaeli F., Haghifam M. R.: A Multiobjective Particle Swarm Optimization for Sizing and Placement of DGs from DG Owner's and Distribution Company's Viewpoints. IEEE Transactions on Power Delivery 29 (4), 2014, pp. 1831-1840.
- [26] Chiradeja P., Ramakumar R.: An approach to quantify the technical benefits of distributed generation. IEEE Transactions on energy conversion 19 (4), 2004, pp. 764-773.
- [27] Zellagui M., Lasmari A., Settoul S., El Sehiemy R. A., El Bayeh C. Z., Chenni R.: Simultaneous allocation of photovoltaic DG and DSTATCOM for techno economic and environmental benefits in electrical distribution systems at different loading conditions using novel hybrid optimization algorithms. International Transactions on Electrical Energy Systems, 31(8), 2021, el2992.
- [28] Belbachir N., Zellagui M., Lasmari A., El-Bayeh C. Z., Bekkouche B.: Optimal PV sources integration in distribution system and its impacts on overcurrent relay based time-current voltage tripping characteristic. In 2021 12th International Symposium on Advanced Topics in Electrical Engineering (ATEE), 2021, pp. 1-7.
- [29] Lasmari A., Zellagui M., Hassan H. A., Settoul S., Abdelaziz A. Y., Chenni R.: Optimal energy efficient integration of photovoltaic DG in radial distribution systems for various load models. In 2020 11th International Renewable Energy Congress (IREC), 2020, pp. 1-6.
- [30] Wang J., Wang X., Di B., Sun C., Zheng W.: A Novel Method for Islanding in Active Distribution Network Considering Distributed Generation. Journal of Power Technologies, 101(1), 2021, pp. 11-21.
- [31] Belbachir N., Zellagui M., Lasmari A., El-Bayeh C. Z., Bekkouche B.: Optimal integration of photovoltaic distributed generation in electrical distribution network using hybrid modified PSO algorithms. Indonesian Journal of Electrical Engineering and Computer Science, 24(1), 2021, pp. 50-60.
- [32] Eberhart R., Kennedy J.: A new optimizer using particle swarm theory. In: MHS 1995. 6th International Symposium on Micro Machine and Human Science ; Nagoya - Japan, 6-4 October 1995.
- [33] Kennedy J., Eberhart R.: Particle swarm optimization. In: ICNN 1995. IEEE International Conference on Neural Networks; Perth -Australia, 27 Nov. - l Dec 1995.
- [34] Ratnaweera A., Halgamuge S. K., Watson H. C.: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Transactions on Evolutionary Computation 8 (3), 2004, pp. 240-255.
- [35] Manafi H., Ghadimi N., Ojaroudi M., Farhadi P.: Optimal placement of distributed generations in radial distribution systems using various PSO and DE algorithms. Elektronika ir Elektrotechnika 19 (10), 2013, pp. 53-57.4
- [36] El-Fergany A.: Optimal allocation of multi-type distributed generators using backtracking search optimization algorithm. International Journal of Electrical Power & Energy Systems 64, 2015, pp. 1197-1205.
- [37] Mahesh K., Nallagownden P., Elamvazuthi I.: Advanced Pareto Front Non-Dominated Sorting Multi-Objective Particle Swarm Optimization for Optimal Placement and Sizing of Distributed Generation. Energies 9 (12), 2016, 982.
- [38] Ting T.O., Shi Y., Cheng S., Lee S.: Exponential Inertia Weight for Particle Swarm Optimization, in: Tan, Y., Shi, Y., Ji, Z. (Eds.), Advances in Swarm Intelligence, Springer Berlin Heidelberg, Berlin, Heidelberg. 2012 pp. 83-90.
- [39] Oda E. S., Abdelsalam A. A., Abdel-Wahab M. N., El-Saadawi M. M.: Distributed generations planning using flower pollination algorithm for enhancing distribution system voltage stability. Ain Shams Engineering Journal 8 (4), pp. 593-603.
- [40] Sultana S., Roy P. K.: Multi-objective quasioppositional teaching learning based optimization for optimal location of distributed generator in radial distribution systems. International Journal of Electrical Power & Energy Systems 63, 2014, pp. 534-545.
- [41] Mohamed Imran A., Kowsalya M.: Optimal size and siting of multiple distributed generators in distribution system using bacterial foraging optimization. Swarm and Evolutionary Computation 15, 2014, pp. 58-65.
- [42] Rama Prabha D., Jayabarathi T., Umamageswari R., Saranya S.: Optimal location and sizing of distributed generation unit using intelligent water drop algorithm. Sustainable Energy Technologies and Assessments 11, 2015, pp. 106-113.
- [43] Injeti S. K., Kumar N. P.: A novel approach to identify optimal access point and capacity of multiple DGs in a small, medium and large-scale radial distribution systems. International Journal of Electrical Power & Energy Systems 45 (1), 2013, pp. 142-151.
- [44] Mohamed M. A., Elnozahy A., Abdelaziz A. Y.: Optimal Energy Saving of Photovoltaic Distributed Generation System with Considering Environment Condition via HyperSpherical Search Algorithm. WSEAS Transactions on Power Systems 15, 2018, pp. 311-325.
- [45] Tan W. S., Hassan M. Y., Majid M. S., Rahman H. A.: Allocation and sizing of DG using Cuckoo Search algorithm. In: PECon 2012. IEEE International Conference on Power and Energy, Kota Kinabalu, Malaysia; 2-5 December 2012.
- [46] Kollu R., Rayapudi S. R., Sadh V. L. N.: A novel method for optimal placement of distributed generation in distribution systems using HSDO. European Transactions on Electrical Power 24 (4), 2014, pp. 547-561.
- [47] Prabha D. R., Jayabarathi T.: Optimal placement and sizing of multiple distributed generating units in distribution networks by invasive weed optimization algorithm. Ain Shams Engineering Journal 7 2016, pp. 683-694.
- [48] Prabha D.R., Jayabarathi T., Umamageswari R., Saranya S.: Optimal Location and Sizing of Distributed Generation Unit using Intelligent Water Drop Algorithm. Sustainable Energy Technologies and Assessments 11, 2015, pp. 106 - 113.
- [49] Tolba M.A., Rezk H., Tulsky V., Zaki Diab A. A., Abdelaziz A. Y., Vanin A.: Impact of Optimum Allocation of Renewable Distributed Generations on Distribution Networks Based on Different Optimization Algorithms. 11 (1), Energies 2017, pp. 1-33.
- [50] Hassan A. A., Fahmy F. H., Nafeh A. E-S. A., Abu-elmagd Mohamed A.: Genetic single objective optimisation for sizing and allocation of renewable DG systems. International Journal of Sustainable Energy 36 (6), 2015, pp. 545-562.
- [51] Mansour H. S. E., Abdelsalam A. A., Sallam A. A.: Optimal distributed energy resources allocation using ant-lion optimizer for power losses reduction. In: SEGE 2017. IEEE International Conference on Smart Energy Grid Engineering, Oshawa, Canada; 14-17 August 2017.
- [52] Muthukumar K., Jayalalitha S.: Optimal placement and sizing of distributed generators and shunt capacitors for power loss minimization in radial distribution networks using hybrid heuristic search optimization technique. International Journal of Electrical Power & Energy Systems 78, 2016, pp. 299-319. Hassan A. A., Fahmy F. H., Nafeh A. E-S. A., Abu-elmagd M. A.: Hybrid genetic multi objective/fuzzy algorithm for optimal sizing and allocation of renewable DG systems: Genetic/Fuzzy Optimization of Renewable DGS. International Transactions on Electrical Energy Systems 26, 2016, pp. 2588-2617.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-86ea5c6a-8564-44cc-ad35-b3f75f80d5d4