PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Elemental and organic carbon proxies for redox conditions of the Oligocene formations in the Ropa Tectonic Window (Outer Carpathians, Poland) : palaeoenvironmental implications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Oligocene Grybów Succession is recognized as a counterpart of the anoxic Menilite Formation. Its comprehensive geochemical investigations are made in the key sections of the Ropa Tectonic Window (the Grybów Unit, Polish Outer Carpathians). The maceral assemblages, dominated by land-plant liptinite, vitrinite and intertinite, correspond to kerogen types II and III. A Tmax vs. HI diagram shows terrestrial kerogen type II with various additions of type III and algal kerogen type I. A variation in δ13Corg. (from –25.21 to –27.38‰) may have resulted from variations in the composition of organic matter (the content of terrestrial vs. marine organic matter), controlled by depositional setting (turbidite vs. hemipelagic). The highest TOC contents are associated with an enhanced influx of land-derived organic matter. The redox-sensitive trace elements positively correlate with TOC and TS contents. Redox conditions varied between oxic and anoxic, as was concluded from TOC-TS, V/(V+Ni) and U/Th. The turbidity currents might have ventilated the bottom waters, especially more efficiently in the proximal zone of turbidite sedimentation. Moreover, oxygenated bottom waters may have also affected the concentration of trace metals, owing to migration of the redox interface downward within the sediments.
Rocznik
Strony
41--53
Opis fizyczny
Bibliogr. 73 poz., rys., tab., wykr.
Twórcy
  • Institute of Geological Sciences, Jagiellonian University, Gronostajowa 3a, PL-30-387, Kraków, Poland
Bibliografia
  • 1. ACME Analytical Laboratories, Ltd, 2013. AcmeLabs Schedule of Services and Fees 2013. Vancouver, Canada. p. 14.
  • 2. Algeo, T. J. & Maynard, J. B., 2004. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology, 206, 3: 289-318.
  • 3. Algeo, T. J. & Tribovillard, N., 2009. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chemical Geology, 268, 3: 211-225.
  • 4. Asaro, F., Alvarez, L. W., Alvarez, W. & Michel, H. V., 1982. Geochemical anomalies near the Eocene/Oligocene and Permian/Triassic boundaries. Geological Society of America Special Papers, 190: 517-528.
  • 5. Bechtel, A., Hámor-Vidó, M., Gratzer, R., Sachsenhofer, R. F. & Puttmann, W., 2012. Facies evolution and stratigraphic correlation in the early Oligocene Tard Clay of Hungary as revealed by maceral, biomarker and stable isotope composition. Marine and Petroleum Geology, 35: 55-74.
  • 6. Berner, R. A. & Raiswell, R., 1983. Burial of organic carbon and pyrite sulfur ion sediments over Phanerozoic time: a new theory. Geochimica et Cosmochimica Acta, 47: 855-862.
  • 7. Bieda, F., Geroch, S., Koszarski, L., Książkiewicz, M. & Żytko. K., 1963. Stratigraphie des Karpathes externes polonaises. Biuletyn Instytutu Geologicznego, 181: 5-174. [In French.]
  • 8. Bojanowski, M. J., 2007. The onset of orogenic activity recorded in the Krosno shales from the Grybów unit (Polish Outer Carpathians). Acta Geologica Polonica, 57: 509-522.
  • 9. Bojanowski, M. J., 2012. Geochemical paleogradient in pore waters controlled by AOM recorded in an Oligocene laminated limestone from the Outer Carpathians. Chemical Geology, 292-293: 45-56.
  • 10. Coplen, T. B., Brand, W. A., Gehre, M., Groning, M., Meijer, H. J., Toman, B. & Verkouteren, R. M., 2006. New guidelines for δ13C measurements. Analytical Chemistry, 78: 2439-2441.
  • 11. Coxall, H. K., Wilson, P. A., Pälike, H., Lear, C. H. & Backman, J., 2005. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature, 433: 53-57.
  • 12. Diester-Haass, L., 1991. Eocene/Oligocene paleoceanography in the Antarctic Ocean, Atlantic sector (Maud Rise, ODP leg 113, site 689B and 690B). Marine Geology, 100: 249-276.
  • 13. DeConto, R. M. & Pollard, D., 2003. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature, 421: 245-249.
  • 14. Espitalié, J. & Bordenave, M. L., 1993. Screening techniques for source rock evaluation: tools for source rocks routine analysis: Rock-Eval pyrolysis. In: Bordenave, M. L. (ed.), Applied Petroleum Geochemistry. Technip, Paris, pp. 237-272.
  • 15. Espitalié, J., Deroo, G. & Marquis, F., 1985. La pyrolyse Rock- Eval et ses applications. Premiere partie. Oil & Gas Science and Technology - Revue de l’Institut Francais du Petrole, 40: 563-579.
  • 16. Hatch, J. R. & Leventhal, J. S., 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, USA. Chemical Geology, 99: 65-82.
  • 17. Helz, G. R., Miller, C. V., Charnock, J. M., Mosselmans, J. F. W., Pattrick, R. A. D., Garner, C. D. & Vaughan, D. J., 1996. Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochimica et Cosmochimica Acta, 60, 19: 3631-3642.
  • 18. Hudson, S. M., Johnson, C. L., Efendiyeva, M. A., Rowe, H. D., Feyzullayev, A. A. & Aliyev, C. S., 2008. Stratigraphy and geochemical characterization of the Oligocene-Miocene Maikop series: implications for the paleogeography of Eastern Azerbaijan. Tectonophysics, 451, 1: 40-55.
  • 19. Jones, B. & Manning, D. A., 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111, 1: 111-129.
  • 20. Kennett, J. P., 1977. Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact on global paleoceanography. Journal of Geophysical Research, 82: 3843-3860.
  • 21. Koster, J., Rospondek, M., Schouten, S., Kotarba, M., Zubrzycki, A. & Sinninghe Damste, J. S., 1998. Biomarker geochemistry of a foreland basin: Oligocene Menilite Formation in the Flysch Carpathians of Southeast Poland. Organic Geochemistry, 29, 649-669.
  • 22. Kotarba, M. & Koltun, Y. V., 2006. Origin and habitat of hydrocarbons of the Polish and Ukrainian parts of the Carpathian Province. AAPG Memoir, 84: 395-443.
  • 23. Kotlarczyk, J., Jerzmańska, A., Świdnicka, E. & Wiszniowska, T., 2006. A framework of ichthyofaunal ecostratigraphy of the Oligocene-Early Miocene strata of the Polish Outer Carpathian basin. Annales Societatis Geologorum Poloniae, 76: 1-111.
  • 24. Kotlarczyk, J. & Uchman, A., 2012. Integrated ichnological and ichthyological analysis of oxygenation changes in the Menilite Formation during Oligocene, Skole and Subsilesian nappes, Polish Carpathians. Palaeogeography, Palaeoclimatology, Palaeoecology, 331-332: 104-118.
  • 25. Kozikowski, H., 1956. Ropa-Pisarzowa unit, a new tectonic unit of the Polish flysch Carpathians. Biuletyn Państwowego Instytutu Geologicznego, 110: 93-137. [In Polish, with English summary.]
  • 26. Krhovský, J., 1995. Early Oligocene palaeoenvironmental changes in the West Carpathian Flysch belt of Southern Moravia. In: Proceedings of XV Congress of the Carpathian-Balkan Geological Association., September 1995. Geological Society of Greece, Special Publication, 4: 209-213.
  • 27. Książkiewicz, M., 1977. The Tectonics of the Carpathians. In: Geology of Poland, vol. 4. Tectonics. The Alpine Tectonic Epoch. Geological Institute, Warsaw, pp. 476- 608.
  • 28. Leszczyński, S., 1997. Origin of the Sub-Menilite Globigerina Marl (Eocene-Oligocene transition) in the Polish Outer Carpathians. Annales Societatis Geologorum Poloniae, 67: 367-427.
  • 29. Lewan, M. D. & Maynard, J. B., 1982. Factors controlling enrichment of vanadium and nickel in the bitumen of organic sedimentary rocks. Geochimica et Cosmochimica Acta, 46, 12: 2547-2560.
  • 30. Lexa, J., Bezak, V., Elecko, M., Mello, J., Polak, M., Potfaj, M. & Vozar, J., 2000. Geological Map of Western Carpathians and Adjacent Areas, 1:500,000. Geological Survey of the Slovak Republic, Bratislava.
  • 31. Liu, Z., Pagani, M., Zinniker, D., DeConto, R., Huber, M., Brinkhuis, H., Shah, S. R., Leckie, R. M. & Pearson, A., 2009. Global cooling during the Eocene-Oligocene climate transition. Science, 323, 5918: 1187-1190.
  • 32. McManus, J., Berelson, W. M., Klinkhammer, G. P., Hammond, D. E. & Holm, C., 2005. Authigenic uranium: relationship to oxygen penetration depth and organic carbon rain. Geochimica et Cosmochimica Acta, 69, 1: 95-108.
  • 33. Meyers, P. A., 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology, 114: 289-302.
  • 34. Morford, J. L. & Emerson, S., 1999. The geochemistry of redox sensitive trace metals in sediments. Geochimica et Cosmochimica Acta, 63: 1735-1750.
  • 35. Olszewska, B., 1983. A contribution of the knowledge of plank- tonic foraminifers of the Globigerina Submenilite Marls of the Polish Outer Carpathians. Kwartalnik Geologiczny, 27: 546-570. [In Polish, with English summary.]
  • 36. Oszczypko, N. & Oszczypko-Clowes, M., 2011. Stratigraphy and tectonics of the Świątkowa Wielka Tectonic Window (Magura Nappe, Polis Outer Carpathians). Geologica Carpathica, 62: 139-154.
  • 37. Oszczypko-Clowes, M., 2008. The stratigraphy of the Oligocene deposits from the Ropa tectonic window (Grybów Nappe, Western Carpathians, Poland). Geological Quarterly, 52: 127-142.
  • 38. Oszczypko-Clowes, M. & Oszczypko, N., 2004. The position and age of the youngest deposits in the Mszana Dolna and Szczawa tectonic windows (Magura Nappe, Western Carpathians, Poland). Acta Geologica Polonica, 54: 339-367.
  • 39. Oszczypko-Clowes, M. & Ślączka, A., 2006. Nannofossil biostratigraphy of the Oligocene deposits in the Grybów tectonic window (Grybów Unit, Western Carpathians, Poland). Geologica Carpathica, 57: 473-482.
  • 40. Oszczypko-Clowes, M., Wójcik-Tabol, P. & Płoszaj, M., 2015. Source areas of the Grybów sub-basin: micropaleontological, mineralogical and geochemical provenance analysis (Outer Western Carpathians, Poland). Geologica Carpathica, 66: 515-534.
  • 41. Pagani, M., Zachos, J. C., Freeman, K. H., Tipple, B., & Bohaty, S., 2005. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science, 309, 5734: 600-603.
  • 42. Peters, K. E. & Moldowan, J. M., 1993. The Biomarker Guide, Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Prentice Hall. Englewood Cliffs, NJ United States, 363 pp.
  • 43. Popov, S. V., Rogl, F., Rozanov, A. Y., Steininger, F. F., Shcherba, I. G. & Kovač, M., 2004. Lithological-Paleogeographic maps of Paratethys - 10 maps Late Eocene to Pliocene. Courier Forschungsinstitut Senckenberg, 250: 1-46.
  • 44. Prothero, D. R., 1994. The Eocene-Oligocene Transition: Paradise Lost. Columbia University Press, New York, 291 pp.
  • 45. Puglisi, D., Badescu, D., Carbone, S., Corso, S., Franchi, R., Gigliuto, L. G., Loiacono, F., Miclaus, C. & Moretti, E., 2006. Stratigraphy, petrography and palaeogeographic significance of the Early Oligocene “menilite facies” of the Tarcau Nappe (Eastern Carpathians, Romania). Acta Geologica Polonica, 56, 1: 105-120.
  • 46. Raiswell, R., & Berner, R. A., 1985. Pyrite formation in euxinic and semi-euxinic sediments. American Journal of Science, 285: 710-724.
  • 47. Rospondek, M. J., Koster, J., & Damsté, J. S., 1997. Novel C26 highly branched isoprenoid thiophenes and alkane from the Menilite Formation, Outer Carpathians, SE Poland. Organic Geochemistry, 26: 295-304.
  • 48. Sachsenhofer, R. F. & Schulz, H.-M., 2006. Architecture of Lower Oligocene source rocks in the Alpine Foreland Basin: a model for syn- and postdepositional source rock features in the Paratethyan Realm. Petroleum Geoscience, 12: 363-377.
  • 49. Sachsenhofer, R. F., Stummer, B., Georgiev, G., Dellmour, R., Bechtel, A., Gratzer, R. & Coric, S., 2009. Depositional environment and hydrocarbon source potential of the Oligocene Ruslar Formation (Kamchia Depression; western Black Sea). Marine and Petroleum Geology, 26: 57-84.
  • 50. Sarkar, A., Sarangi, S., Bhattacharya, S. K. & Ray, A. K., 2003a. Carbon isotopes across the Eocene-Oligocene boundary sequence of Kutch, western India: Implications to oceanic productivity and pCO2 change. Geophysical Research Letters, 30: 1-4.
  • 51. Sarkar, A., Sarangi, S., Ebihara, M., Bhattacharya, S. K. & Ray, A. K., 2003b. Carbonate geochemistry across the Eocene/Oligocene boundary of Kutch, western India: implications to oceanic O2-poor condition and foraminiferal extinction. Chemical Geology, 201, 3: 281-293.
  • 52. Schulz, H. M., Sachsenhofer, R. F., Bechtel, A., Polesny, H., & Wagner, L., 2002. The origin of hydrocarbon source rocks in the Austrian Molasse Basin (Eocene-Oligocene transition). Marine and Petroleum Geology, 19: 683-709.
  • 53. Schulz, H. M., Bechtel, A. & Sachsenhofer, R. F., 2005. The birth of the Paratethys during the Early Oligocene: From Tethys to an ancient Black Sea analogue? Global and Planetary Change, 49: 163-176.
  • 54. Sikora, W., 1960. On the stratigraphy of the series in the tectonic window at Ropa near Gorlice (Western Carpathians). Kwartalnik Geologiczny, 4: 152-170. [In Polish, with English summary.]
  • 55. Sikora, W., 1970. Geology of the Magura Nappe between Szymark Ruski and Nawojowa. Biuletyn Instytutu Geologicznego, 235: 5-121. [In Polish, with English summary.]
  • 56. Skrzypek, G. & Jędrysek, M. O., 2005.13C/12C ratio in peat cores: Record of past climates. In: Lichtfouse, E., Schwarzbauer, J. & Robert, D. (eds), Environmental Chemistry - Green Chemistry and Pollutants in Ecosystems. Springer Berlin Heidelberg, pp. 65-73.
  • 57. Soták, J., 2008. Paleoenvironmental changes of the Carpathian Flysch Sea during the transition from the Peri-Tethyan to Black Sea-type basins. Mineralia Slovaca, 40: 253-254.
  • 58. Soták, J., 2010. Paleoenvironmental changes across the Eocene- Oligocene boundary: insights from the Central-Carpathian Paleogene Basin. Geologica Carpathica, 61: 1-26.
  • 59. Soták, J., Pereszlenyi, M., Marschalko, R., Milicka, J., & Starek, D., 2001. Sedimentology and hydrocarbon habitat of the submarine-fan deposits of the Central Carpathian Paleogene Basin (NE Slovakia). Marine and Petroleum Geology, 18: 87-114.
  • 60. Ślączka, A., 1973. Wycieczka 1: Grybów-Polany-Berest-Krzyżówka. Punkt 1-4. In: Gucik, S., Ślączka, A. & Żytko, K. (eds), Przewodnik geologiczny po wschodnich Karpatach fliszowych. Wydawnictwa Geologiczne, Warszawa, pp. 78-87. [In Polish.]
  • 61. Świdziński, H., 1963. Excursion B-I-1: Ciężkowice-Grybów- Krosno-Iwonicz Zdrój. In: Wdowiarz, S. & Nowak, W. (eds), Association Géologique Karpato-Balkanique, Vl-eme Congres, Varsovie-Cracovie, Guide des Excursions: Karpates Externes. Wydawnictwa Geologiczne, Warszawa, pp. 85-91.
  • 62. Thomson, J., Higgs, N. C., Croudace, I. W., Colley, S. & Hydes, D. J., 1993. Redox zonation of elements at an oxic/post-oxic boundary in deep-sea sediments. Geochimica et Cosmochimica Acta, 57: 579-595.
  • 63. Tribovillard, N., Algeo, T., Lyons, T. W. & Riboulleau, A., 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology, 232: 12-32.
  • 64. Veto, I., 1987. An Oligocene sink for organic carbon: upwelling in the Paratethys? Palaeogeography, Palaeoclimatology, Palaeoecology, 60: 143-153.
  • 65. Veto, I. & Hetényi, M., 1991. Fate of organic carbon and reduced sulphur in dysoxic-anoxic Oligocene facies of the Central Paratethys (Carpathian Mountains and Hungary). Geological Society, Special Publications, London, 58, 1: 449-460.
  • 66. Wedepohl, K. H., 1971. Environmental influences on the chemical composition of shales and clays. In: Ahrens, L. H., Press, F., Runcorn, S. K. & Urey, H. C. (eds), Physics and Chemistry of the Earth. Pergamon, Oxford, pp. 307-331.
  • 67. Więcław, D., 2002. Origin of Oligocene oils from the Polish Flysch Carpathians: Organic sulfur in the kerogen of the Menilite shales and kinetics of hydrocarbon generation process. Unpublished Ph. D. thesis, AGH University of Science and Technology, Kraków, pp. 131. [In Polish.]
  • 68. Wignall, P. B. & Maynard, J. R., 1993. The sequence stratigraphy of transgressive black shales. Source Rocks in a Sequence stratigraphic framework, 37: 35-47.
  • 69. Wignall, P. B. & Newton, R., 1998. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks. American Journal of Science, 298: 537-552.
  • 70. Wilkin, R. T. & Barnes, H. L., 1996. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species. Geochimica et Cosmochimica Acta, 60, 21: 4167-4179.
  • 71. Wójcik-Tabol, P., 2015. Depositional redox conditions of the Grybów Succession (Oligocene, Polish Carpathians) in the light of petrological and geochemical indices. Geological Quarterly, 59: 603-614.
  • 72. Zachos, J. C., Lohmann, K. C., Walker, J. C. & Wise, S. W., 1993. Abrupt climate change and transient climates during the Paleogene: A marine perspective. The Journal of Geology, pp. 191-213.
  • 73. Zachos, J. C Quinn, T. M. & Salamy, K. A., 1996. High-resolution (10 yr) deep-sea foraminiferal stable isotope records of the Eocene-Oligocene climate transition. Paleoceanography, 11: 251-266.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-86e992b6-1ce7-4e79-8d18-82c6cdd147b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.