PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation and Characterization of HMX/Estane Nanocomposites

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new insensitive explosive based on octahydro-1,3,5,7-tetranitro1,3,5,7-tetrazocine (HMX) was prepared by spray drying using Estane 5703 as a binder. Scanning electron microscopy was used to characterize the morphology and particle size of the HMX/Estane 5703 nanocomposites. The composites were analyzed by X-ray diffractometry and differential scanning calorimetry and their impact sensitivity was determined. For comparison, raw HMX was also tested using these three methods. The nanocomposite morphology was found to be microspherical (1 to 8 μm diameter) and composed of many tiny particles, 30 to 150 nm in size. The crystal type of the HMX/Estane 5703 nanocomposites was unchanged. The activation energy, self-ignition temperature and average drop height of the raw HMX were 515.66 kJ·mol-1, 278.63 °C and 18.4 cm, respectively. In comparison, the corresponding values for the HMX/Estane 5703 nanocomposites were 488.92 kJ·mol-1, 279.3 °C and 75.4 cm, respectively.
Słowa kluczowe
Rocznik
Strony
433--442
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
  • Chemical Industry and Ecology Institute, North University of China, Taiyuan Shanxi, 030051, P. R. China
  • xiaofeng_shi1987@163.com
autor
  • Chemical Industry and Ecology Institute, North University of China, Taiyuan Shanxi, 030051, P. R. China
autor
  • Chemical Industry and Ecology Institute, North University of China, Taiyuan Shanxi, 030051, P. R. China
autor
  • Chemical Industry and Ecology Institute, North University of China, Taiyuan Shanxi, 030051, P. R. China
Bibliografia
  • [1] Elbeih A., Zeman S., Pachman J., Effect of Polar Plasticizers on the Characteristics of Selected Cyclic Nitramines, Cent. Eur. J. Energ. Mater., 2013, 10(3), 339-349.
  • [2] Kaur J., Arya V.P., Kaur G., Lata P., Evaluation of the Thermo-mechanical and Explosive Properties of Bimodal and Hybrid Polymer Bonded Explosive (PBX) Compositions Based on HNS and HMX, Cent. Eur. J. Energ. Mater., 2013, 10(3), 371-391.
  • [3] Elbeih A., Zeman S., Jungova M., Akstein Z., Effect of Different Polymeric Matrices on the Sensitivity and Performance of Interesting Cyclic Nitramines, Cent. Eur. J. Energ. Mater., 2012, 9(2), 131-138.
  • [4] Elbeih A., Pachman J., Zeman S., Vávra P., Trzciński W.A., Akštein Z., Detonation Characteristics of Plastic Explosives Based on Attractive Nitramines with Polyisobutylene and Poly(Methyl Methacrylate) Binders, J. Energ. Mater., 2012, 30(4), 358-371.
  • [5] Burnham A.K., Weese R.K., Kinetics of Thermal Degradation of Explosive Binders Viton A, Estane, and Kel-F, Thermochim. Acta., 2005, 426(1-2), 85-92.
  • [6] Barua A., Horie Y., Zhou M., Energy Localization in HMX-Estane Polymer-bonded Explosives during Impact Loading, J. Appl. Phys., 2012, 111(5), 054902-054902-11.
  • [7] Yang L., Surface Polarity of Beta-HMX Crystal and the Related Adhesive Forces with Estane Binder, Langmuir, 2008, 24(23), 13477-13482.
  • [8] Barua A., Zhou M., Computational Analysis of Temperature Rises in Microstructures of HMX-Estane PBXs, Comput. Mech., 2013, 52(1), 151-159.
  • [9] Singh G., Prem F.S., Soni P., Studies on Energetic Compounds. Part 28: Thermolysis of HMX and Its Plastic Bonded Explosives Containing Estane, Thermochim. Acta, 2003, 399(1), 153-165.
  • [10] Xiao J.J., Huang H., Li J.S., Zhang H., Zhu W., Xiao H.M., Computation of Interface Interactions and Mechanical Properties of HMX-based PBX with Estane 5703 from Atomic Simulation, J. Mater. Sci., 2008, 43(17), 5685-5691.
  • [11] Kim H., Lagutcheva A., Dlott D.D., Surface and Interface Spectroscopy of High Explosives and Binders: HMX and Estane, Propellants Explos. Pyrotech., 2006, 31(2), 116-123.
  • [12] Barua A., Horie Y., Zhou M., Microstructural Level Response of HMX-Estane Polymer-bonded Explosive Under Effects of Transient Stress Waves, Proc. Roy. Soc. Lond. Math. Phys. Sci., 2012, 468, (2147), 3725-3744.
  • [13] Hobbs M.L., Kaneshige M.J., Ignition Experiments and Models of a Plastic Bonded Explosive (PBX 9502), J. Chem. Phys., 2014, 140(12), 124203.
  • [14] Tarver C.M., Modeling Detonation Experiments on Triaminotrinitrobenzene (TATB)-based Explosives LX-17, PBX 9502, and Ultrafine TATB, J. Energ. Mater., 2012, 30(3), 220-251.
  • [15] Wemhoff A.P., Howard W.M., Burnham A.K., Nichols A.L., An LX-10 Kinetic Model Calibrated Using Simulations of Multiple Small-scale Thermal Safety Tests, J. Phys. Chem. A, 2008, 112(38), 9005-9011.
  • [16] Wang Y., Jiang W., Song X.L., Deng G.D., Li F.S., Insensitive HMX (Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) Nanocrystals Fabricated by High-yield, Low-cost Mechanical Milling, Cent. Eur. J. Energ. Mater., 2013, 10(2), 277-287.
  • [17] Zohari N., Keshavarz M.H., Seyedsadjadi S.A., The Advantages and Shortcomings of Using Nano-sized Energetic Materials, Cent. Eur. J. Energ. Mater., 2013, 10(1), 135-147.
  • [18] Akkbarzade H., Parsafar G.A., Bayat Y. Structural Stability of Nano-sized Crystals of HMX: a Molecular Dynamics Simulation Study, Appl. Surf. Sci., 2012, 258(7), 2226-2230.
  • [19] Song X.L., Wang Y., An C.W., Guo X.D., Dependence of Particle Morphology and Size on the Mechanical Sensitivity and Thermal Stability of Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, J. Hazard. Mater., 2008, 159(2-3), 222-229.
  • [20] Kim J.W., Shin M.S., Kim J.K., Kim H.S., Koo K.K., Evaporation Crystallization of RDX by Ultrasonic Spray, Ind. Eng. Chem. Res., 2011, 50(21), 12186-12193.
  • [21] Vijayalakshmi R., Radhakrishnan S., Rajendra P.S., Girish G.M., Arun S.K., Particle Size Management Studies on Spherical 3-Nitro-1,2,4-triazol-5-one, Part. Syst. Char., 2012, 28(3-4), 57-63.
  • [22] Zhigach A.N., Leipunskii I.O., Berezkina N.G., Pshechenkov P.A., Zotova P.A., Kudrov B.V., Gogulya M.F., Brazhnikov M.A., Kuskov M.L., Aluminized Nitramine-based Nanocomposites: Manufacturing Technique and Structure Study, Combust. Explos. Shock Waves (Engl. Transl.), 2009, 45(6), 666-677.
  • [23] Qiu H., Stepanov V., Di Stasio A.R., Chou T.M., Lee W.Y., RDX-based Nanocomposite Microparticles for Significantly Reduced Shock Sensitivity, J. Hazard. Mater., 2011, 185(1), 489-493.
  • [24] An C.W., Li H.Q., Geng X.H., Li J.L., Wang J.Y., Preparation and Properties of 2,6-Diamino-3,5-dinitropyrazine-1-oxide based Nanocomposites, Propellants Explos. Pyrotech., 2013, 38(2), 172-175.
  • [25] Qiu H., Stepanov V., Chou T., Surapaneni A., Di Stasio A.R., Lee W.Y., Single-step Production and Formulation of HMX Nanocrystals, Powder Technol., 2012, 226, 235-238.
  • [26] Shen J.P., Duan X.H., Luo Q.P., Zhou Y., Bao Q.L., Ma Y.J., Pei C.H., Preparation and Characterization of a Novel Cocrystal Explosive, Cryst. Growth Des., 2011, 11(5), 1759-1765.
  • [27] Kissinger H.E., Reaction Kinetics in Differential Thermal Analysis, Anal. Chem., 1957, 29(11), 1702-1706.
  • [28] Zhang T.L., Hu R.Z., Xie Y., Li F.P., The Estimation of Critical Temperatures of Thermal Explosion for Energetic Materials Using Non-isothermal DSC, Thermochim. Acta., 1994, 244, 171-176.
  • [29] Sovizi M.R., Hajimirsadeghi S.S., Naderizadeh B., Effect of Particle Size on Thermal Decomposition of Nitrocellulose, J. Hazard. Mater., 2009, 168(2-3), 1134-1139.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-86e45f3c-35a5-4da5-a349-36cd0bba570f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.