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Abstract. It is known that every locally de�ned operator acting between two Hölder

spaces is a Nemytskii superposition operator. We show that if such an operator is

bounded in the sense of the norm, then its generator is continuous.

1. Introduction

Let I ⊂ R be an arbitrary interval and by RI we denote the set of all functions

ϕ : I → R. For a given two-place function h : I × R → R, the mapping

K : RI → RI de�ned by

K(ϕ)(x) := h(x, ϕ(x)), ϕ ∈ RI , x ∈ I,

is called a Nemytskii superposition operator of the generator h.
It is known that every locally de�ned operator mapping the set of con-

tinuous functions C(I,R) into itself must be a superposition operator [2].

Moreover, K maps C(I,R) into itself if and only if its generator h is contin-

uous. At this background it is surprising enough that there are discontinuous
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functions h : I × R → R generating the superpositions operators K which

map the space of continuously di�erentiable functions C1(I,R) into itself (cf.

[1, p. 209]). In [3] it has been proved that if a locally de�ned operator maps

the Banach space Hφ(I,R) of all Hölder functions ϕ : I → R into Hψ(I,R),
then it is a Nemytskii superposition operator. The purpose of this paper is to

show that if, additionally, K is bounded with respect to Hφ(I,R)�norm, then

its generator must be continuous.

2. Main result

Let φ : (0,∞) → (0,∞) satisfy the following condition:

(i) φ is strictly increasing, φ(0+) := lim
t→0+

φ(t) = 0 and the function

(0,∞) 5 t→ φ(t)
t

is decreasing.

Let us note the following (easy to verify)

Remark 1. If φ : (0,∞) → (0,∞) satis�es condition (i), then φ is subad-

ditive and continuous.

Let I ⊂ R be an interval and let x0 ∈ I be arbitrarily �xed. For a given

φ : (0,∞) → (0,∞), having the above properties, by Hφ(I,R) we denote the
Banach space of all Hölder functions ϕ : I → R equipped with the norm

‖ϕ‖φ := |ϕ(x0)|+ sup
x,y∈I,x �=y

|ϕ(x) − ϕ(y)|
φ(|x− y|) .

Clearly, ϕ ∈ Hφ(I,R) if and only if there exists a constant c > 0 such that

|ϕ(x) − ϕ(y)| ≤ cφ(|x − y|), x, y ∈ I.

Let us notice that if φ(t) = tα for some α ∈ (0, 1], then Hα(I,R) :=
Hφ(I,R) is the classical Hölder functions space and H1(I,R) becomes the

Banach space of Lipschitz functions.

De�nition. Let φ,ψ : (0,∞) → (0,∞) satisfy condition (i). An operator

K : Hφ(I,R) → Hψ(I,R) is said to be locally de�ned if for any open interval

J ⊂ R and for any functions ϕ,ψ ∈ Hφ(I,R),

ϕ
∣∣
J∩I = ψ

∣∣
J∩I ⇒ K(ϕ)

∣∣
J∩I = K(ψ)

∣∣
J∩I ,

where φ
∣∣
J∩I denotes the restriction of ϕ to J ∩ I.
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In [3] the following result was proved:

Theorem 1. ([3], Corollary 2). Let I ⊂ R be an interval. If a locally

de�ned operator K maps Hφ(I,R) into Hψ(I,R), then there exists a unique

function h : I × R → R such that

K(ϕ)(x) = h(x, ϕ(x)), (x ∈ I),

for all ϕ ∈ Hφ(I,R), that is K is a Nemytskii operator of the generator h.

We say that an operator K : Hφ(I,R) → Hψ(I,R) is bounded if it maps

the convergent sequences of Hφ(I,R) into bounded sequences in Hψ(I,R).

The main result reads as follows:

Theorem 2. Let I ⊂ R be an interval. If a locally de�ned operator

K : Hφ(I,R) → Hψ(I,R) is bounded, then there exists a continuous function

h : I × R → R such that

K(ϕ)(x) = h(x, ϕ(x)); ϕ ∈ Hφ(I,R), (x ∈ I).

Proof. By Theorem 1, there exists a function h : I×R → R such that the

formula of our result holds true. We shall show that h is continuous.

Without any loss of generality we can assume that I = [a, b), where

0 < b ≤ +∞, and that

‖ϕ‖φ := |ϕ(a)| + sup
x,y∈I,x �=y

|ϕ(x) − ϕ(y)|
φ(|x− y|) .

First we show that h is continuous with respect to the second variable. To

this end let us �x (x0, y0) ∈ I and choose arbitrarily a real sequence (yn)n∈N

such that

yn �= y0, n ∈ N, lim
n→∞ yn = y0. (1)

Let (xn)n∈N be a sequence such that xn ∈ I, n ∈ N, and

|xn − x0| = φ−1
(√

|yn − y0|
)
, n ∈ N.

Hence we obtain

|yn − y0|
φ(|xn − x0|)

=
|yn − y0|

φ
(
φ−1

(√
|yn − y0|

)) =
√
|yn − y0|, n ∈ N. (2)

De�ne the functions Pyn : I → R, ϕn : I → R, n ∈ N, by the following

formulas:

Pyn(x) := yn, n ∈ N, (3)
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ϕn(x) =


y0, for x ∈ [a, x0],
yn − y0

xn − x0
(x− x0) + y0 for x ∈ (x0, xn), n ∈ N,

yn, for x ∈ [xn, b).

(4)

and put

ϕ0(x) = y0, x ∈ I.
Of course,

Pyn , ϕn ∈ Hφ(I,R), n ∈ N.

Since

‖Pyn − ϕ0‖φ = |yn − y0|, n ∈ N,

applying (1) and (2), we get

lim
n→∞ ‖Pyn − ϕ0‖φ = 0, lim

n→∞ ‖ϕn − ϕ0‖φ = 0. (5)

Making use of (3), (4), the triangle inequality and by the de�nition of the

norm, we have

|h(x0, yn)− h(x0, y0)| ≤ |h(xn, yn)− h(x0, yn)|+ |h(xn, yn)− h(x0, y0)|

= |h(xn, Pyn(xn)− h(x0, Pyn(x0)|

+|h(xn, ϕn(xn))− h(x0, ϕn(x0))|

= |K(Pyn)(xn)−K(Pyn)(x0)|

+|K(ϕn)(xn)−K(ϕn)(x0)|

=
|K(Pyn)(xn)−K(Pyn)(x0)|

ψ(|xn − x0|)
ψ(|xn − x0|)+

+
|K(ϕn)(xn)−K(ϕn)(x0)

ψ(|xn − x0|)
ψ(|xn − x0|)

≤ ‖K(Pyn)‖ψψ(|xn−x0|)+‖K(ϕn)‖ψ ·ψ(|xn−x0|).

Taking into account (5), the equality ψ(0+) = 0, the boundedness of the

operator K and letting n tend to the in�nity, we get the continuity of h with

respect to the second variable.

To show that h is continuous �x (x0, y0) ∈ I × R, take two arbitrary se-

quences xn ∈ I, yn ∈ R, n ∈ N, convergent to x0 and y0, respectively, and

de�ne Pyn : I → R, n ∈ N ∪ {0}, by

Pyn(x) = yn, n ∈ N ∪ {0}.
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Hence, by the triangle inequality and by the de�nition of the norm, we have

|h(xn, yn)− h(x0, y0)| ≤ |h(xn, yn)− h(x0, yn)|+ |h(x0, yn)− h(x0, y0)|

= |h(xn, Pyn(xn))− h(x0, Pyn(x0)|

+ |h(x0, yn)− h(x0, y0)|

= |(K(Pyn)(xn)−K(Pyn)(x0)|

+ |h(x0, yn)− h(x0, y0)|

=
|K(Pyn)(xn)−K(Pyn)(x0)|

ψ(|xn − x0|)
· ψ(|xn − x0|)

+ |h(x0, yn)− h(x0, y0)|

≤ ‖K(Pyn)‖ψψ(|xn, x0|) + |h(x0, yn)− h(x0, y0)|.

Since, by the de�nition of Pyn , n ∈ N ∪ {0},

lim
n→∞ ‖Pyn − Py0‖φ = 0,

applying the boundedness of the operator K, the equality ψ(0+) = 0 and

the �rst part of the proof, i.e. the continuity of h with respect to the second

variable, letting n tend to the in�nity, we get the required claim. ✷

Remark 2. Taking in the above theorem a compact interval I ⊂ R, one

gets Theorem 7.3 from [1].

To construct an example showing that the assumption of the boundedness

of K is essential, we need the following

Lemma. Let (X, d), (Y, ρ) be metric spaces. Suppose A,B ⊂ X are closed,

intA ∩ intB = ∅ and adjacent in the following sense: for any x ∈ A, y ∈ B
there exists a point z ∈ δA ∩ δB such that

d(x, y) = d(x, z) + d(z, y). (6)

If the functions f : A→ Y and g : B → Y are Lipschitz continuous and

f(z) = g(z) for all z ∈ δA ∩ δB,
then the function h : (A ∪B)→ Y de�ned by

h(x) :=
{
f(x) for x ∈ A,
g(x) for x ∈ B

is Lipschitz continuous. (Here δA stands for the boundary of A.)
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Proof. Since f and g are Lipschitz continuous, there is c ∈ R+ such that

ρ(f(x), f(y)) ≤ cd(x, y) for x, y ∈ A; ρ(g(x), g(y)) ≤ cd(x, y) for x, y ∈ B.

Take x, y ∈ A ∪ B and assume that x ∈ A and y ∈ B. By assumption, there

is z ∈ δA ∩ δB such that (6) holds. Hence, by the triangle inequality,

ρ(h(x), h(y)) ≤ ρ(h(x), h(z))+ρ(h(z), h(y)) = ρ(f(x), f(z))+ρ(g(z), g(y))

≤ cd(x, z) + cd(z, y) = cd(x, y).

As the remaining two cases are obvious, the proof is complete. ✷

Example. De�ne a two-place function h : [0, 1] × R → R by the formula

h(x, y) :=


0 if y ≤ 0,
y√
x

if 0 < y ≤ √
x,

1 if y >
√
x.

(7)

Observe that h is continuous in [0, 1] × R\{(0, 0)} and discontinuous at the

point (0, 0). In fact we have more, namely outside of any neighbourhood of

(0, 0), by Lemma, the function h is Lipschitzian.

Denote by F [0, 1] the set of all functions ϕ : [0, 1] → R. Let K : F [0, 1] →
F [0, 1] be the Nemytskii composition (so locally de�ned) operator generated

by h, i.e.

K(ϕ)(x) := h(x, ϕ(x)), x ∈ [0, 1].

We shall show that K maps the space H1([0, 1],R) of all Lipschitz continuous
functions ϕ : [0, 1] → R into itself.

Take ϕ ∈ H1([0, 1],R). If ϕ(0) �= 0, then as h is Lipschitz continuous outside
any neighbourhood of (0, 0), the function K(ϕ), as composition of Lipschitz

continuous functions, is Lipschitz continuous in [0, 1], so K(ϕ) ∈ H1([0, 1],R).
If ϕ(0) = 0, then K(ϕ)

∣∣
[ε,1]

is Lipschitz continuous for any ε ∈ (0, 1]. In view

of Lemma, it is enough to show that K(ϕ)
∣∣
[0,ε]

is Lipschitz continuous. To this

end assume that ϕ satis�es the Lipschitz condition with a constant c, that is

|ϕ(x) − ϕ(x)| ≤ c|x− x|, x, x ∈ [0, 1].

Setting x = 0, we hence get

|ϕ(x)| ≤ cx, x ∈ [0, 1],
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so the graph of the function ϕ is contained in the triangle set

D := {(x, y) : x ∈ [0, 1], |y| ≤ cx}.

If ϕ is nonpositive on any subinterval of I ⊂ [0, 1], then, by the de�nition of

h, we have K(ϕ)
∣∣
I
= 0 and, obiously, K(ϕ) is Lipschitz continiuous on I with

zero Lipschitz constant. Therefore, it is enough to con�ne our considerations

to the case when the graph of ϕ
∣∣
[0,ε]

is contained in the set

Dε := {(x, y) : x ∈ [0, ε], 0 ≤ y ≤ cx}.

Let us choose ε > 0 such that c < 1√
ε
. Then, clearly cx <

√
x for all x ∈ (0, ε].

Since for all (x, y) ∈ Dε we have∣∣∣∣ ∂∂xh(x, y)
∣∣∣∣ = ∣∣∣∣− y2

2x
√
x

∣∣∣∣ ≤ (cx)2

2x
√
x
≤ c2

√
ε

2

and ∣∣∣∣ ∂∂yh(x, y)
∣∣∣∣ = 2y√

x
≤ 2cx√

x
≤ 2c

√
ε,

we infer that h
∣∣
Dε

is Lipschitz continuous. It follows that K(ϕ)
∣∣
[0,ε]

, as a

composition of Lipchitz functions, is Lipschitz continuous.

We claim that K is unbounded. To see this take a sequence of constant

functions convergent to zero, ϕk : [0, 1] → R, k ∈ N, de�ned by ϕk(x) = 1√
k
.

According to (7), we get

K(ϕk)(x) =


1 for 0 ≤ x <

1
k

1√
kx

for
1
k
≤ x ≤ 1

k ∈ N.

Since

‖K(ϕk)‖ψ ≥
∣∣∣ϕk(x)− ϕk(x)

x− x

∣∣∣, x, x ∈ [0, 1], x �= y,

setting x = 4
k , x = 0, for all k ≥ 4, we get

‖K(ϕk)‖ψ ≥
k

8
, k ≥ 4,

which shows that K is not bounded. ✷
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