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1. INTRODUCTION

In this paper, we study the following fourth-order nonlinear hyperbolic equation

utt + ∆2u + au + µut = |u|p−2u, (x, y, t) ∈ Ω × (0, ∞) (1.1)

with initial conditions

u(x, y, 0) = u0(x, y), ut(x, y, 0) = u1(x, y), (x, y) ∈ Ω (1.2)

and free boundary conditions (see [18, Section 2.5])




u(0, y, t) = uxx(0, y, t) = u(π, y, t) = uxx(π, y, t) = 0,

(y, t) ∈ (−l, l) × (0, ∞),
uyy(x, ±l, t) + σuxx(x, ±l, t) = 0, (x, t) ∈ (0, π) × (0, ∞),
uyyy(x, ±l, t) + (2 − σ)uxxy(x, ±l, t) = 0, (x, t) ∈ (0, π) × (0, ∞),

(1.3)

where Ω = (0, π) × (−l, l) ⊂ R2, µ > 0, 2 < p < ∞, σ ∈ (0, 1
2 ), and a = a(x, y) is

a sign-changing and bounded measurable function.
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Problem (1.1)–(1.3) can be used to describe the nonlinear dynamics of suspension
bridges (see [4, 19]). The open rectangular plate Ω = (0, π) × (−l, l) represents the
roadway of a suspension bridge, and the edges x = 0, π connect with the ground while
the edges y = ±l are free. The unknown function u represents the vertical displacement
of the plate Ω.

A one-dimensional simply supported beam suspended by the hangers was suggested
as a model for suspension bridges in [7, 11, 12]. But if one models a suspension bridge
by a beam, there is no way to highlight the torsional oscillations. Moreover, a reliable
model for suspension bridges should be nonlinear and it should have enough degrees
of freedom to display torsional oscillations. There have been some studies on the
nonlinear behavior of suspension bridges (see e.g. [3, 5, 6, 15]). Ferrero and Gazzola [4]
suggested

utt + ∆2u + h(x, y, u) + µut = f, (1.4)
subject to (1.2) and (1.3), where h(x, y, u) is the restoring force due to the hangers
of suspension bridges, and f is the external force. They investigated the existence,
uniqueness and asymptotic behavior of weak solutions to the problem (1.4), (1.2),
(1.3). Their main results showed that if f ∈ L2(Ω) is independent of t, then the unique
global solution to the problem (1.4), (1.2), (1.3) converges to the stationary solution
as time tends to infinity. Subsequently, Wang [19] studied the local existence, global
existence, uniqueness, polynomial decay and finite time blow-up of weak solutions to
the problem (1.1)–(1.3) with E(0) < d, so-called the initial energy is less than the
potential well depth. Recently, Xu et al. [22] considered the following fourth-order
hyperbolic equation with nonlinear damping

utt + ∆2u + au + µ|ut|q−2ut = |u|p−2u, (1.5)

where 2 < q < p < ∞. They obtained the local existence, global existence, uniqueness,
polynomial decay and finite time blow-up of weak solutions to the problem (1.5),
(1.2), (1.3) with the subcritical initial energy E(0) < d and the critical initial energy
E(0) = d. Moreover, in the case E(0) > 0, they derived the finite time blow-up
of weak solutions to the problem (1.1)–(1.3). Mohammed et al. [13] considered the
existence, asymptotic boundary estimates and uniqueness of large solutions to fully
nonlinear equations in bounded domains. Baraket and Radulescu [2] studied two
classes of nonhomogeneous elliptic problems with Dirichlet boundary condition and
involving a fourth-order differential operator with variable exponent and power-type
nonlinearities and established the existence of a nontrivial weak solution in the case of
a small perturbation of the right-hand side.

In the present paper, we focus on the decay rates of weak solutions to the problem
(1.1)–(1.3). Our main results show that certain norms of solutions can decay exponen-
tially to zero as time tends to infinity, which complements the existing results on the
asymptotic behavior of solutions to the problem (1.1)–(1.3). Our main technical tools
are a family of potential wells (see [8, 10, 20, 21]), which include the classical potential
well as a special case. One advantage of introducing a family of potential wells is that
they can provide more accurate estimates for the Nehari functional, which the classical
potential well can not do.
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This paper is organized as follows. In Section 2, we display some notations, defini-
tions and lemmas related to the problem (1.1)–(1.3). Moreover, we present our main
results on the problem (1.1)–(1.3). In Section 3, we establish the global existence and
uniqueness of solutions with the subcritical initial energy E(0) < d and the critical
initial energy E(0) = d. Although the global existence and uniqueness of solutions to
the problem (1.1)–(1.3) with E(0) < d has been proved in [19], our proof is different.
In Section 4, we prove the exponential decay of solutions with E(0) < d and E(0) = d.

2. PRELIMINARIES AND MAIN RESULTS

Throughout this paper, for the sake of simplicity, we denote

∥ · ∥p := ∥ · ∥Lp(Ω), ∥ · ∥ := ∥ · ∥2, (u, v) :=
∫

Ω

uv dxdy

by [16] and according to [4],

H2
∗ (Ω) = {u ∈ H2(Ω)|u = 0 on {0, π} × (−l, l)}

is a Hilbert space with the inner product

(u, v)∗ := (u, v)H2
∗(Ω) =

∫

Ω

(∆u∆v + (1 − σ)(2uxyvxy − uxxvyy − uyyvxx))dxdy

and the norm

∥u∥∗ := ∥u∥H2
∗(Ω) =




∫

Ω

|∆u|2dxdy + 2(1 − σ)
∫

Ω

(u2
xy − uxxuyy)dxdy




1
2

,

which is equivalent to ∥ · ∥H2(Ω) for σ ∈
(
0, 1

2
)
. Here, in terms of [1, Theorem 4.15],

∥ · ∥H2(Ω) can be defined by (∥∇2 · ∥2 + ∥ · ∥2) 1
2 . Moreover, according to [19], there

holds the following Sobolev embedding inequality.

Lemma 2.1 ([19]). Assume that 1 ≤ q < ∞. Then, for any u ∈ H2
∗ (Ω), there holds

∥u∥q ≤ Sq∥u∥∗,

where

Sq =
(

π

2l
+

√
2

2

)
(2πl)

q+2
2q

(
1

1 − σ

) 1
2

.
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Lemma 2.2 ([19]). Assume that −Λ1 < a1 ≤ a ≤ a2, where {Λi}∞
i=1 is the eigenvalue

sequence to the eigenvalue problem




∆2u = Λu, (x, y) ∈ Ω,

u(0, y) = uxx(0, y) = u(π, y) = uxx(π, y) = 0, y ∈ (−l, l),
uyy(x, ±l) + σuxx(x, ±l) = uyyy(x, ±l) + (2 − σ)uxxy(x, ±l) = 0, x ∈ (0, π),

and Λ1 < 1. Then, for any u ∈ H2
∗ (Ω), there holds

A1∥u∥2
∗ ≤ ∥u∥2

∗ + (au, u) ≤ A2∥u∥2
∗,

where

A1 =





1 + a1
Λ1

, a1 < 0,

1, a1 ≥ 0,

and

A2 =





1, a2 < 0,

1 + a2
Λ1

, a2 ≥ 0.

Definition 2.3 (Weak solutions). A function u ∈ L∞(0, T ; H2
∗ (Ω)) with ut ∈

L∞(0, T ; L2(Ω)) is called a weak solution to the problem (1.1)–(1.3) in Ω × [0, T ),
provided u(0) = u0 in H2

∗ (Ω), ut(0) = u1 in L2(Ω), and

(ut(t), v) +
t∫

0

(u(τ), v)∗ dτ +
t∫

0

(au(τ), v) dτ + µ(u(t), v)

=
t∫

0

(|u(τ)|p−2u(τ), v) dτ + (u1, v) + µ(u0, v)

(2.1)

for all v ∈ H2
∗ (Ω) and t ∈ (0, T ).

Now we are in a position to define the total energy associated with the problem
(1.1)–(1.3)

E(t) = 1
2∥ut(t)∥2 + 1

2∥u(t)∥2
∗ + 1

2(au(t), u(t)) − 1
p

∥u(t)∥p
p,

the potential energy functional

J(u) = 1
2∥u∥2

∗ + 1
2(au, u) − 1

p
∥u∥p

p
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and the Nehari functional

I(u) = ∥u∥2
∗ + (au, u) − ∥u∥p

p.

Thus, the Nehari manifold can be defined by

N = {u ∈ H2
∗ (Ω) \ {0}|I(u) = 0}.

We introduce the potential well (see e.g. [9, 14,17,19,22,23])

W = {u ∈ H2
∗ (Ω) | I(u) > 0, J(u) < d} ∪ {0}

and its closure
W = {u ∈ H2

∗ (Ω) | I(u) ≥ 0, J(u) ≤ d},

where the depth of potential well

d = inf
u∈N

J(u).

The main results of this paper are as follows.

Theorem 2.4 (Global existence). Let −∧1 < a1 ≤ a ≤ a2, u0 ∈ H2
∗ (Ω) and

u1 ∈ L2(Ω).

(i) Assume that E(0) < d, and I(u0) > 0 or ∥u0∥∗ = 0. Then the problem (1.1)–(1.3)
admits a unique global solution u(t) ∈ W for all t ∈ [0, ∞). Moreover,

E(t) + µ

t∫

0

∥uτ (τ)∥2 dτ ≤ E(0). (2.2)

(ii) Assume that E(0) = d and I(u0) ≥ 0. Then the problem (1.1)–(1.3) admits
a unique solution u(t) ∈ W for all t ∈ [0, ∞) that satisfies (2.2).

Theorem 2.5 (Exponential decay). Let −∧1 < a1 ≤ a ≤ a2, u0 ∈ H2
∗ (Ω) and

u1 ∈ L2(Ω).

(i) Assume that 0 < E(0) < d, and I(u0) > 0 or ∥u0∥∗ = 0. Then there exist
constants α, β > 0 such that

∥ut(t)∥2 + ∥u(t)∥2
∗ ≤ αe−βt (2.3)

for all t ∈ [0, ∞).
(ii) Assume that E(0) = d and I(u0) ≥ 0. Then there exists a constant t̃ > 0 such

that (2.3) remains valid for the solution u(t) ∈ W for all t ∈ [t̃, ∞).
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3. PROOF OF THEOREM 2.4

Proof of Theorem 2.4. (i) Let {wj}∞
j=1 be the eigenfunctions of the eigenvalue problem

in Lemma 2.2. Then, according to [4, Theorem 3.4], {wj}∞
j=1 is an orthogonal basis of

H2
∗ (Ω) and an orthonormal basis of L2(Ω). We construct the approximate solutions to

the problem (1.1)–(1.3)

un(t) =
n∑

j=1
ξjn(t)wj , n = 1, 2, . . . ,

satisfying

(untt(t), wj) + (un(t), wj)∗ + (aun(t), wj) + µ(unt(t), wj)
= (|un(t)|p−2un(t), wj), j = 1, 2, . . . , n,

(3.1)

with 



un(0) =
n∑

j=1
ξjn(0)wj → u0 in H2

∗ (Ω),

unt(0) =
n∑

j=1
ξ′

jn(0)wj → u1 in L2(Ω).
(3.2)

Multiplying (3.1) by ξ′
jn(t) and summing for j, we obtain

d
dt

En(t) + µ∥unt(t)∥2 = 0, (3.3)

where

En(t) = 1
2∥unt(t)∥2 + 1

2∥un(t)∥2
∗ + 1

2(aun(t), un(t)) − 1
p

∥un(t)∥p
p. (3.4)

Therefore, by integrating (3.3) with respect to τ from 0 to t, we obtain

En(t) + µ

t∫

0

∥unτ (τ)∥2 dτ = En(0), ∀t ∈ [0, ∞). (3.5)

We now claim that
un(t) ∈ W (3.6)

for all t ∈ [0, ∞) and sufficiently large n.
Indeed, if ∥u0∥∗ = 0, then u0 ∈ W. If I(u0) > 0, then, from E(0) < d, i.e.,

1
2∥u1∥2 + J(u0) < d,

it follows that J(u0) < d. Hence, u0 ∈ W. Thus, un(0) ∈ W for sufficiently large n
due to (3.2). As a result, assertion (3.6) follows as desired. Arguing by contradiction,
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we suppose that there would exist a t0 > 0 such that un(t0) ∈ ∂W , i.e., I(un(t0)) = 0
and ∥un(t0)∥∗ ̸= 0, or J(un(t0)) = d. In terms of (3.4), (3.5) and (3.2), we get

1
2∥unt(t)∥2 + J(un(t)) < d, (3.7)

for all t ∈ [0, ∞) and sufficiently large n. This tells us that J(un(t0)) = d is impossible.
On the other hand, if I(un(t0)) = 0 and ∥un(t0)∥∗ ̸= 0, then we get J(un(t0)) ≥ d by
the definition of d, which contradicts (3.7).

From (3.4)–(3.6), (3.2), Lemma 2.2 and

J(un(t)) =p − 2
2p

(
∥un(t)∥2

∗ + (aun(t), un(t))
)

+ 1
p

I(un(t)),

we deduce that

1
2∥unt(t)∥2 + p − 2

2p
A1∥un(t)∥2

∗ + µ

t∫

0

∥unτ (τ)∥2 dτ < d

for all t ∈ [0, ∞) and sufficiently large n. Moreover,

∥|un(t)|p−2un(t)∥r
r ≤ Sp

p∥un(t)∥p
∗ < Sp

p

(
2pd

(p − 2)A1

) p
2

,

where r = p
p−1 . Therefore, there exist u and a subsequence of {un}, still denoted

by {un} and we shall not repeat, such that as n → ∞,

un ⇀ u weakly star in L∞(0, ∞; H2
∗ (Ω)), (3.8)

un → u a.e. in Ω × [0, ∞) and strongly in Lp(Ω) for each t > 0, (3.9)
unt ⇀ ut weakly star in L∞(0, ∞; L2(Ω)) and weakly in L2(0, ∞; L2(Ω)), (3.10)
|un|p−2un ⇀ |u|p−2u weakly star in L∞(0, ∞; Lr(Ω)).

Integrating (3.1) with respect to t, we get

(unt(t), wj) +
t∫

0

(un(τ), wj)∗ dτ +
t∫

0

(aun(τ), wj) dτ + µ(un(t), wj)

=
t∫

0

(|un(τ)|p−2un(τ), wj) dτ + (unt(0), wj) + µ(un(0), wj).

For fixed j, taking n → ∞, we get

(ut(t), wj) +
t∫

0

(u(τ), wj)∗ dτ +
t∫

0

(au(τ), wj) dτ + µ(u(t), wj)

=
t∫

0

(|u(τ)|p−2u(τ), wj) dτ + (u1, wj) + µ(u0, wj).
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By virtue of (3.2), we have u(0) = u0 in H2
∗ (Ω) and ut(0) = u1 in L2(Ω). Therefore,

u is a global solution to the problem (1.1)–(1.3) in the sense of Definition 2.3.
In addition, from (3.8)–(3.10), (3.5) and (3.2), we deduce that

1
2∥ut(t)∥2 + 1

2∥u(t)∥2
∗ + 1

2(au(t), u(t)) + µ

t∫

0

∥uτ (τ)∥2 dτ

≤ lim inf
n→∞


1

2∥unt(t)∥2 + 1
2∥un(t)∥2

∗ + 1
2(aun(t), un(t)) + µ

t∫

0

∥unτ (τ)∥2 dτ




= lim inf
n→∞

(
En(0) + 1

p
∥un(t)∥p

p

)

= E(0) + 1
p

∥u(t)∥p
p

for all t ∈ [0, ∞). Thus, there holds (2.2). By (2.2) and the similar arguments to the
proof of assertion (3.6), we have u(t) ∈ W for all t ∈ [0, ∞).

Next we prove the uniqueness of solutions. Suppose that u and ū are two solutions
to the problem (1.1)–(1.3). Set

ũ = ū − u,

û(t) =





−
s∫

t

ũ(τ) dτ, t ≤ s,

0, t > s,

s ∈ (0, T ]

and

ǔ(t) =
t∫

0

ũ(τ) dτ.

Then

−
s∫

0

(ũt(t), ût(t)) dt +
s∫

0

(ũ(t), û(t))∗ dt +
s∫

0

(aũ(t), û(t)) dt + µ

s∫

0

(ũt(t), û(t)) dt

=
s∫

0

(|ū(t)|p−2ū(t) − |u(t)|p−2u(t), û(t)) dt.

Taking into account ũ(t) = ût(t) and û(0) = −ǔ(s), we obtain

1
2∥ũ(s)∥2 + 1

2∥ǔ(s)∥2
∗ + 1

2(aǔ(s), ǔ(s)) + µ

s∫

0

∥ũ(t)∥2 dt

=
s∫

0

(|u(t)|p−2u(t) − |ū(t)|p−2ū(t), û(t)) dt.
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Hence, by mean value inequality, Hölder’s inequality, Minkowski’s inequality,
Lemmas 2.1 and 2.2, there exist constants C1, C2 > 0 such that

1
2∥ũ(s)∥2 + A1

2 ∥ǔ(s)∥2
∗

≤ C1

s∫

0

∫

Ω

(|u(t)|p−2 + |ū(t)|p−2)|ũ(t)||û(t)| dxdydt

≤ C1

s∫

0

(∥u(t)∥p−2
2p−2 + ∥ū(t)∥p−2

2p−2)∥ũ(t)∥∥û(t)∥2p−2 dt

≤ C2

s∫

0

∥ũ(t)∥∥û(t)∥∗ dt.

Since û(t) = ǔ(t) − ǔ(s), it follows from Cauchy’s inequality with ϵ = A1
4 that

1
2∥ũ(s)∥2 + A1

2 ∥ǔ(s)∥2
∗

≤ C2

s∫

0

∥ũ(t)∥(∥ǔ(t)∥∗ + ∥ǔ(s)∥∗) dt

≤ A1
4 ∥ǔ(s)∥2

∗ + C3

s∫

0

(∥ũ(t)∥2 + ∥ǔ(t)∥2
∗) dt

for some C3 > 0. Thus there exists a C4 > 0 such that

∥ũ(s)∥2 + ∥ǔ(s)∥2
∗ ≤ C4

s∫

0

(∥ũ(t)∥2 + ∥ǔ(t)∥2
∗) dt,

which, together with Gronwall’s inequality, gives ũ = 0, i.e., u = ū.
(ii) We divide the proof of (ii) into two cases.

Case 1. ∥u0∥∗ ≠ 0. Let λm = 1 − 1
m , um0 = λmu0, m = 2, 3, . . . We consider the

problem (1.1), (1.3) with the following initial conditions

u(x, y, 0) = um0(x, y), ut(x, y, 0) = u1(x, y). (3.11)

From I(u0) ≥ 0,

J(λu) = 1
2λ2∥u∥2

∗ + 1
2λ2(au, u) − 1

p
λp∥u∥p

p

and
I(λu) = λ

d
dλ

J(λu),
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it is simpleness to verify that there exists a unique λ0 = λ0(u0) ≥ 1 such that
J(λu) is strictly increasing for λ ∈ [0, λ0] and takes the maximum at λ = λ0. Hence
J(um0) < J(u0) and I(um0) > 0. Moreover,

J(um0) =p − 2
2p

(
∥um0∥2

∗ + (aum0, um0)
)

+ 1
p

I(um0) > 0.

We further obtain
Em(0) = 1

2∥u1∥2 + J(um0) > 0

and
Em(0) <

1
2∥u1∥2 + J(u0) = E(0) = d.

Hence, we conclude from (i) that, for each m, problem (1.1), (1.3), (3.11) admits
a unique global solution um(t) ∈ W satisfying

(umt(t), v) +
t∫

0

(um(τ), v)∗ dτ +
t∫

0

(aum(τ), v) dτ + µ(um(t), v)

=
t∫

0

(|um(τ)|p−2um(τ), v) dτ + (u1, v) + µ(um0, v)

and

Em(t) + µ

t∫

0

∥umτ (τ)∥2 dτ ≤ Em(0).

Consequently,

1
2∥umt(t)∥2 + p − 2

2p
A1∥um(t)∥2

∗ + µ

t∫

0

∥umτ (τ)∥2 dτ < d.

By the similar arguments to the proof of (i), problem (1.1)–(1.3) admits a unique
global solution u(t) ∈ W satisfying (2.2).
Case 2. ∥u0∥∗ = 0. It is obvious that J(u0) = 0 in this case. Thus

E(0) = 1
2∥u1∥2.

Let λm = 1 − 1
m

and um1 = λmu1, m = 2, 3, . . ., and consider the problem (1.1), (1.3)
with the following initial conditions

u(x, y, 0) = u0(x, y), ut(x, y, 0) = um1(x, y). (3.12)
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Note that
0 < Em(0) = 1

2∥um1∥2 < E(0).

We conclude from (i) that, for each m, problem (1.1), (1.3), (3.12) admits a unique
global solution um(t) ∈ W. The remainder of the proof is the same as that in Case 1.

This completes the proof of Theorem 2.4.

4. PROOF OF THEOREM 2.5

We introduce a family of potential wells

Wδ = {u ∈ H2
∗ (Ω) | Iδ(u) > 0, J(u) < d(δ)} ∪ {0}, δ ∈

(
0,

p

2

)
,

where the depth of family of potential wells

d(δ) = inf
u∈Nδ

J(u),

the δ-Nehari manifold

Nδ = {u ∈ H2
∗ (Ω) \ {0} | Iδ(u) = 0}

and the δ-Nehari functional

Iδ(u) = δ∥u∥2
∗ + δ(au, u) − ∥u∥p

p.

Proposition 4.1.
d(δ) ≥ p − 2δ

2p
δ

2
p−2 A

p
p−2
1 S

− 2p
p−2

p ,

where δ ∈
(
0, p

2
)
.

Proof. Let u ∈ Nδ, then
δ∥u∥2

∗ + δ(au, u) = ∥u∥p
p,

which, together with Lemmas 2.1 and 2.2, gives

δA1∥u∥2
∗ ≤ Sp

p∥u∥p
∗,

i.e.,
∥u∥∗ ≥ δ

1
p−2 A

1
p−2
1 S

− p
p−2

p .

Note that

J(u) ≥p − 2δ

2p
A1∥u∥2

∗ + 1
p

Iδ(u).

Hence, Proposition 4.1 follows from the definition of d(δ).

Clearly, when δ = 1, we have d(δ) = d and Wδ = W.
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Lemma 4.2. Under the conditions of (i) in Theorem 2.4, un(t) ∈ Wδ for all
δ ∈ (δ1, δ2), where (δ1, δ2) is the maximal interval such that d(δ) > E(0). Moreover,

I(un(t)) ≥ (1 − δ1)A1∥un(t)∥2
∗,

for all t ∈ [0, ∞) and sufficiently large n.
Proof. From (3.5) we have

1
2∥unt(t)∥2 + J(un(t)) ≤ En(0) < d(δ), ∀t ∈ [0, ∞), δ ∈ (δ1, δ2)

for sufficiently large n. Thus, by the similar arguments to the proof of [10, Theorem 3.1],
we infer that un(t) ∈ Wδ for all δ ∈ (δ1, δ2). Hence Iδ(un(t)) ≥ 0 for all δ ∈ (δ1, δ2),
and so Iδ1(un(t)) ≥ 0. Consequently,

I(un(t)) =(1 − δ1)(∥un(t)∥2
∗ + (aun(t), un(t))) + Iδ1(un(t))

≥(1 − δ1)A1∥un(t)∥2
∗.

Proof of Theorem 2.5. (i) For the approximate solutions un given in the proof of (i)
in Theorem 2.4, there holds (3.3). Multiplying (3.3) by eγt, we get

d
dt

(eγtEn(t)) + µeγt∥unt(t)∥2 = γeγtEn(t), (4.1)

where γ is a positive constant to be determined later. Integrating (4.1) with respect
to t, we obtain

eγtEn(t) + µ

t∫

0

eγτ ∥unτ (τ)∥2 dτ = En(0) + γ

t∫

0

eγτ En(τ) dτ. (4.2)

For the second term on the right side of (4.2), we deduce from (3.4) and
Lemmas 2.2, 4.2 that

t∫

0

eγτ En(τ) dτ ≤1
2

t∫

0

eγτ
(
∥unτ (τ)∥2 + A2∥un(τ)∥2

∗
)

dτ

≤1
2

t∫

0

eγτ

(
∥unτ (τ)∥2 + A2

(1 − δ1)A1
I(un(τ))

)
dτ.

Due to the fact that
d
dt

(unt(t), un(t)) = (untt(t), un(t)) + ∥unt(t)∥2

= ∥unt(t)∥2 − ∥un(t)∥2
∗ + ∥un(t)∥p

p

− (aun(t), un(t)) − µ(unt(t), un(t))

= ∥unt(t)∥2 − I(un(t)) − µ

2
d
dt

∥un(t)∥2,
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we further obtain
t∫

0

eγτ En(τ) dτ ≤ (1 − δ1)A1 + A2
2(1 − δ1)A1

t∫

0

eγτ ∥unτ (τ)∥2 dτ

− A2
2(1 − δ1)A1

t∫

0

eγτ d
dτ

(
(unτ (τ), un(τ)) + µ

2 ∥un(τ)∥2
)

dτ.

(4.3)

Note that

−
t∫

0

eγτ d
dτ

(
(unτ (τ), un(τ)) + µ

2 ∥un(τ)∥2
)

dτ

= (unt(0), un(0)) + µ

2 ∥un(0)∥2

− eγt
(

(unt(t), un(t)) + µ

2 ∥un(t)∥2
)

+ γ

t∫

0

eγτ
(

(unτ (τ), un(τ)) + µ

2 ∥un(τ)∥2
)

dτ.

Thus it is easy to see from Cauchy’s inequality that

−
t∫

0

eγτ d
dτ

(
(unτ (τ), un(τ)) + µ

2 ∥un(τ)∥2
)

dτ

≤ 1
2(∥unt(0)∥2 + (µ + 1)∥un(0)∥2)

+ 1
2eγt(∥unt(t)∥2 + (µ + 1)∥un(t)∥2)

+ γ

2

t∫

0

eγτ (∥unτ (τ)∥2 + (µ + 1)∥un(τ)∥2) dτ.

(4.4)

Moreover, from assertion (3.6), we get

En(t) = 1
2∥unt(t)∥2 + J(un(t))

= 1
2∥unt(t)∥2 + 1

p
I(un(t)) + p − 2

2p

(
∥un(t)∥2

∗ + (aun(t), un(t))
)

≥ 1
2∥unt(t)∥2 + p − 2

2p
A1∥un(t)∥2

∗.

(4.5)

Then according to Lemma 2.1, there exists a constant C1 > 0 such that
1
2(∥unt(t)∥2 + (µ + 1)∥un(t)∥2) ≤ C1En(t). (4.6)
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Therefore, we conclude from (4.2)–(4.4) and (4.6) that there exist constants C2, C3 > 0
such that

eγtEn(t) + µ

t∫

0

eγτ ∥unτ (τ)∥2 dτ

≤ C2En(0) + γ((1 − δ1)A1 + A2)
2(1 − δ1)A1

t∫

0

eγτ ∥unτ (τ)∥2 dτ

+ C3γeγtEn(t) + C3γ2
t∫

0

eγτ En(τ) dτ.

Choosing
γ < min

{
1

2C3
,

2µ(1 − δ1)A1
(1 − δ1)A1 + A2

}
,

we have

eγtEn(t) ≤ 2C2En(0) + 2C3γ2
t∫

0

eγτ En(τ) dτ.

Then it is easy to verify that

eγtEn(t) ≤ 2C2En(0)e2C3γ2t,

which gives
En(t) < 2C2de−βt (4.7)

for sufficiently large n, where β = γ − 2C3γ2. From (4.5) we have

∥unt(t)∥2 + ∥un(t)∥2
∗ ≤ C4En(t)

for some C4 > 0. This, combined with (3.8), (3.10) and (4.7), yields

∥ut(t)∥2 + ∥u(t)∥2
∗ ≤ lim inf

n→∞
(∥unt(t)∥2 + ∥un(t)∥2

∗)

≤2C2C4de−βt

for all t ∈ [0, ∞).
(ii) For the solution u(t) ∈ W to the problem (1.1)–(1.3), we have I(u(t)) > 0

for all t ∈ [0, ∞). From (2.1) we get

d
dt

(ut(t), u(t)) = ∥ut(t)∥2 − I(u(t)) − µ(ut(t), u(t)).

Hence, ∥ut(t)∥ > 0, i.e.,
d
dt

t∫

0

∥uτ (τ)∥2 dτ > 0.
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Consequently, there exists a constant t̃ > 0 such that

t̃∫

0

∥uτ (τ)∥2 dτ > 0,

which, together with (2.2) and E(0) = d, yields

E(t) ≤ d − µ

t̃∫

0

∥uτ (τ)∥2 dτ, ∀t ∈ [t̃, ∞).

Set

d̃ := d − µ

t̃∫

0

∥uτ (τ)∥2 dτ.

Then 0 < E(t) ≤ d̃ < d for all t ∈ [t̃, ∞). Therefore, we infer from (i) that there holds
(2.3) for all t ∈ [t̃, ∞).
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