Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper investigates the polarization persistence of linear polarization and circular polarization in foggy environments from ultraviolet (UV) to near-infrared (NIR). Using polarization tracking Monte Carlo simulation for varying particle size, wavelength, refractive index, and detection distance, it is shown that linear polarization and circular polarization exhibit different persistence performance. For wet haze of 0.6 μm mean diameter particles, right-handed circular polarization shows better persistence than parallel polarization at wavelengths of 0.36, 0.543 and 1.0 μm. But parallel polarization shows better persistence at wavelengths of 1.55, 2.1 and 2.4 μm. For wet haze of 1.0 μm mean diameter particles, right-handed circular polarization shows better persistence at wavelengths of 0.36, 0.543, 1.0 and 1.55 μm. But parallel polarization shows better persistence at wavelengths of 2.1 and 2.4 μm. For wet haze of 2.0 μm particles and radiation fog and advection fog, right-handed circular polarization shows better persistence at all simulated wavelengths. In short, right-handed circular polarization persists better than parallel polarization in most scenarios, however, with increasing wavelength and decreasing particle size, parallel polarization gradually persists better than right-handed circular polarization. Finally, anisotropy factor for various particle models is used to map the propagation law of right-handed circular polarization and parallel polarization.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
153--160
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
autor
- College of Transportation, Ludong University, Yantai 264025, China
autor
- Research Institute of Photonics, Dalian Polytechnic University, Dalian116034, China
autor
- College of Transportation, Ludong University, Yantai 264025, China
autor
- College of Transportation, Ludong University, Yantai 264025, China
Bibliografia
- [1] JUDD K.M., THORNTON M.P., RICHARDS A.A., Automotive sensing: Assessing the impact of fog on LWIR, MWIR, SWIR, visible, and lidar performance, Proc. SPIE 11002, Infrared Technology and Applications XLV, 2019: 110021F, DOI: 10.1117/12.2519423.
- [2] TYO J.S., GOLDSTEIN D.L., CHENAULT D.B., SHAW J.A., Review of passive imaging polarimetry for remote sensing applications, Applied Optics 45(22), 2006: 5453–5469, DOI: 10.1364/AO.45.005453.
- [3] TUCHIN V.V., Polarized light interaction with tissues, Journal of Biomedical Optics 21(7), 2016: 071114, DOI: 10.1117/1.JBO.21.7.071114.
- [4] LERNER A., SHASHAR N., Polarized Light and Polarization Vision in Animal Sciences, Springer, Berlin, 2014.
- [5] GUO Z., WANG X., LI D., WANG P., ZHANG N., HU T., ZHANG M., GAO J., Advances on theory and application of polarization information propagation, Infrared and Laser Engineering 49(6), 2020: 20201013, DOI: 10.3788/IRLA20201013.
- [6] DEIRMENDJIAN D., Scattering and polarization properties of water clouds and hazes in the visible and infrared, Applied Optics 3(2), 1964: 187–196, DOI: 10.1364/AO.3.000187.
- [7] RYAN J.S., CARSWELL A.I., Laser beam broadening and depolarization in dense fogs, Journal of the Optical Society of America 68(7), 1978: 900–908, DOI: 10.1364/JOSA.68.000900.
- [8] FADE J., PANIGRAHI S., CARRÉ A., FREIN L., HAMEL C., BRETENAKER F., RAMACHANDRAN H., ALOUINI M., Long-range polarimetric imaging through fog, Applied Optics 53(18), 2014: 3854–3865, DOI: 10.1364/AO.53.003854.
- [9] VAN DER LAAN J.D., SCRYMGEOUR D.A., KEMME S.A., DERENIAK E.L., Detection range enhancement using circularly polarized light in scattering environments for infrared wavelengths, Applied Optics 54(9), 2015: 2266–2274, DOI: 10.1364/AO.54.002266.
- [10] VAN DER LAAN J.D., SEGAL J.W., WESTLAKE K., REDMAN B.J., WRIGHT J.B., Testing active polarimetric imagers in fog, Sandia National Lab. (SNL-NM), Albuquerque, NM (United States), 2019.
- [11] PEÑA-GUTIÉRREZ S., BALLESTA-GARCIA M., GARCÍA-GÓMEZ P., ROYO S., Quantitative demonstration of the superiority of circularly polarized light in fog environments, Optics Letters 47(2), 2022: 242–245, DOI: 10.1364/OL.445339.
- [12] ZENG X., CHEN X., LI Y., QIAO X., Polarization enhancement of linearly polarized light through foggy environments at UV–NIR wavelengths, Applied Optics 60(26), 2021: 8103–8108, DOI: 10.1364/AO.431638.
- [13] RAMELLA-ROMAN J.C., PRAHL S.A., JACQUES S.L., Three Monte Carlo programs of polarized light transport into scattering media: part I, Opt. Express. 13(12), 2005: 4420–4438, DOI: 10.1364/OPEX.13.004420.
- [14] JOHN W., Size distribution characteristics of aerosols, [In] Aerosol Measurement: Principles, Techniques, and Applications, Third Edition, P. Kulkarni, P.A. Baron, K. Willeke [Eds.], Wiley, 2011: 41–54, DOI: 10.1002/9781118001684.ch4.
- [15] CLARK J.P., KIM A.D., Forward-peaked scattering of polarized light, Optics Letters 39(22), 2014: 6422–6425, DOI: 10.1364/OL.39.006422.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-86dfc2db-a5d4-4d31-be99-b151da3ca30f