PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Interaction between tectonics, plutonism and mineralization of the Duna Pb-Ba ore deposit regarding fluid inclusion study (Central Alborz, Iran)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article discusses the impacts of overprinting of tectonic and plutonic events on the mineralization of the Duna Pb-Ba ore deposit, according to geologic settings and fluid inclusion studies. The Duna carbonate-hosted deposit contains a significant amount of Ag (18.9–264.3 ppm ), Cu (77–41600 ppm), Sb (32.7–11000 ppm), Sr (63.5–15100 ppm), and Fluid inclusions with 7.34–23.65 wt.% NaCl equivalent. The homogenization temperature of about 110–285°C, as well as the paragenesis of the minerals shows a difference compared with other Pb-Zn deposits such as the Irish-type and MVT. The ore mineralization in the Duna mine occurred as stratabound, open space-filling, and along the brecciated fault zones. The concordant (stratabound) type of mineralization, with salinity and homogenization temperature of 18.54 to 23.65 wt.% NaCl equivalent, and 113°C to 165°C respectively, is usually typical of MVT-ore deposits, which in this area evolved during the Early Cimmerian orogeny and was later interrupted by mineralization along younger brecciated fault zones with salinity and homogenization temperature of 7.34 to 23.65 wt.% NaCl equivalent, and 113°C to 285°C respectively. This discordant mineralization, which occurred along the faults, formed by the end of the Late Cretaceous and during the Cenozoic as a result of the intrusion of a plutonic mass, and is comparable to the Irish-type ore deposits.
Rocznik
Strony
201--222
Opis fizyczny
Bibliogr. 62 poz., rys., tab., wykr.
Twórcy
  • Department of Earth sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
  • Department of Geology, Lahijan branch, Islamic Azad University, Lahijan, Iran
  • Department of Earth sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
  • German Mining Museum, Department of Archaeometallurgy, Bochum, Germany
  • Department of Geology, Lahijan branch, Islamic Azad University, Lahijan, Iran
  • Department of Earth Sciences, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
Bibliografia
  • 1. Aghanabati, A. 2005. Geology of Iran. 733 pp. Geological Survey of Iran Publication. Tehran.
  • 2. Aerden, D., Sayab, M. and Bouybaouenel, M. 2010. Conjugate-shear folding: A model for the relationships between foliations, folds, and shear zones. Journal of Structural Geology, 32, 1030–1045.
  • 3. Allen, M., Ghassemi, M.R., Shahrabi, M. and Qorashi, M. 2003. Accommodation of late Cenozoic oblique shortening in the Alborz range, northern Iran. Journal of Structural Geology, 25, 659–672.
  • 4. Andrew, C.J. 1986. The tectonostratigraphic controls to mineralization in the Silvermines area, County Tipperary, Ireland. In: Andrew C.J., Crowe R.W.A., Finlay S., Pennell, W.M., Pyne J. (Eds), Geology and Genesis of Mineral Deposits in Ireland, 377–408. Irish Association for Economic Geology; Dublin.
  • 5. Annells, R.N. 1975. Explanatory text of the Qazvin and Rasht quadrangles map. 94pp. Geological Survey of Iran.
  • 6. Arribas, A.J.R., Cunningham, C.G., Rytuba, J.J., Rye, R.O., Kelly, C., Podwysocki, M.H., Mckee, E.H. and Tosdal, R.M. 1995. Geology, geochronology, fluid inclusions and isotope geochemistry of the Rodalquilar Au alunite deposits, Spain. Economic Geology, 90, 795–822.
  • 7. Axen, G.J., Lam, P.S., Grove, M., Stockli, D.F. and Hassanzadeh, J. 2001b. Exhumation of the West-Central Alborz Mountains, Iran, Caspian subsidence, and collision-related tectonics. Geology, 29, 559–562.
  • 8. Babaey, S., Dehbozorgi, M. and Hakimi Asiabar, S. 2014. Assessment of active tectonics by using morphometric indices in Central Alborz. Quarterly Quantitative Geomorphological Research, 1, 40–56.
  • 9. Baharfiruzi, Kh. and Shafeii, A.R. 2005. Geological map of Javaherdeh (1:100,000) sheet. Geological Survey of Iran, Tehran, Iran.
  • 10. Banks, D.A., Boyce, A.J. and Samson, I.M. 2002. Constraints on the origins of fluids forming Irish Zn-Pb-Ba deposits: Evidence from the composition of fluid inclusions. Economic Geology, 97, 471–480.
  • 11. Bazargani-Gilani, K. 1982. Die mittelpermischen Scichtgebundenen Blei-Zink-Schwerspat-Largestattendes Kalawanga Distriktes. Zentral Alborz, Iran (mit besonderer Berucksich tigung des Duna-Grubenfelds), 163 pp. Ph.D. Thesis, Diss university, Heidelberg.
  • 12. Bean, R.E. 1983. The Magmatic-Meteoric Transition. In: Armstrong, R.L. (Ed.), The Role of Heat in the Development of Energy and Mineral Resources in the Northern Basin and Range Province. Geothermal Resources Council, Special Report, 13, 245–253. Davis, California.
  • 13. Bortnikov, N.S., Genkin, A.D., Dobrovol’skaya, M.G., Muravitskaya, G.N. and Filimonova, A.A. 1991. The nature of chalcopyrite inclusions sphalerite: Exsolution, coprecipitation, or “disease”? Economic Geology, 86, 1070–1082.
  • 14. Doyle, E., Bowden, A.A., Jones G.V., and Stanley, G.A. 1992. The geology of the Galmoy zinc-lead deposits, Co. Kilkenny. In: Bowden, A.A., Earls, G., O.’Connor, P.G. and Pyne, J.F. (Eds), The Irish Minerals Industry 1980–1990, 211–225. Irish Association for Economic Geology; Dublin.
  • 15. Ehteshami-Moinabadi, M. 2016. Possible basement transverse faults in the Western Alborz, northern Iran. Journal of Sciences, Islamic Republic of Iran, 27, 329–342. [In Persian]
  • 16. Eshaghpour, M. and Alizadeh Saloomahalleh, H. 2015. Relationship between thermal springs of Western Alborz Mountains and regional tectonics. Proceedings of World Geothermal Congress, Melbourne, Australia, 19–25 April 2015, 9 pp. University of Melbourne; Melbourne.
  • 17. Feely, M. 2018. Editorial for special issue. Fluid inclusions: Study methods, applications, and case histories. Minerals, 8, 307–309.
  • 18. Fusciardi, L.P., Guven, J.F., Stewart, D.R.A., Carboni, V., Walsh, J.J. 2003. The geology and genesis of the Lisheen Zn-Pb deposit, Co. Tipperary, Ireland. In: Kelly, J.G., Andrew, C.J., Ashton, J.H., Boland, M.B., Earls, G., Fusciardi, L. and Stanley, G. (Eds), Europe’s Major Base Metal Deposits, 455−481. Irish Association for Economic Geology; Dublin.
  • 19. Goldstein, R.H. and Reynolds, T.J. 1994. Systematics of fluid inclusion in diagnostic minerals. 199 pp. Society of Economic Geologists and Paleontologists.
  • 20. Guest, B. 2004. The thermal, sedimentological, and structural evolution of the Central Alborz Mountains of northern Iran: Implications for the Arabia-Eurasia continent-continent collision and collisional processes in general Ph.D. thesis. 292 pp. University of California; Los Angeles.
  • 21. Guest, B., Axen, G.J., Lam, P.S. and Hassanzadeh, J. 2006. Late Cenozoic shortening in the west-Central Alborz Mountain, northern Iran, by combined conjugate strike-slip and thinskinned deformation. Geosphere, 2, 35–52.
  • 22. Hakimi Asiabar S., Pourkermani M., Shahriari S., Ghorbani M. and Ghasemi M.R. 2011. Geological zones of western Alborz Mountains. Journal of Sciences, Islamic Azad University, 21, 113–124.
  • 23. Hakimi Asiabar, S. and Bagheriyan, S. 2018. Exhumation of the Deylaman fault trend and its effects on the deformation style of the western Alborz belt in Iran. International Journal of Earth Sciences, 107, 539–551.
  • 24. Hakimi Asiabar, S. 2019. Structural deformations of Duna mine. Scientific Quarterly Journal, Geosciences, 28, 235–246. [In Persian]
  • 25. Hashemian, E., Jamali, H. and Ahmadian, J. 2018. Mineralogy, Fluid inclusion and Geochemistry of Tappeh-Khargosh Cu-Au deposit (SW of Ardestan), Iran. Journal of Economic Geology, 10, 299–324.
  • 26. Hassanzadeh, J., Ghazi, A.M., Axene, G., Guest, B., Stocklin, D. and Tucker, P. 2002. Oligocene mafic-alkaline magmatism in north and northwest of Iran: Evidence for the separation of the Alborz from the Urumieh-Dokhtar magmatic arc. Geological Society of America, Abstracts with Programs 34 (6), 331.
  • 27. Holzer, H.F. and Momenzadeh, M. 1969. Note on the geology of Elika and Duna lead mines, Central Alborz, northern Iran. Geological Survey of Iran, 21, 27–36.
  • 28. Ixer, R.A. 2004. The petrography of the zinc-lead-copper ores at Crow Island, Killarney, Ireland. UK Journal of Mines and Minerals, 24, 29–34.
  • 29. Jackson, J., Priestley, K., Allen, M. and Berberian, M. 2002. Active tectonics of the South Caspian Basin. Geophysical Journal International, 148, 214–245.
  • 30. Javidfakhr, B. and Ahmadian, S. 2019. Structural concepts for Soltanieh fault zone (NW Iran). Iranian Journal of Earth Science, 11, 290–304.
  • 31. Laurence, N.W. 2021. IMA-CNMNC approved mineral symbols. Mineralogical Magazine, 85, 291–320.
  • 32. Leach, D.L. and Sangster, D.F. 1993. Mississippi Valley-type lead-zinc deposits. In: Kirkham, R.V., Sinclair W.D., Thorpe R.I. and Duke, J.M. (Eds), Mineral Deposit Modeling. Geological Association of Canada Special Paper, 40, 289–314.
  • 33. Leach, D.L., Bradley, D.C., Huston, D., Pisarevsky, S.A., Taylor, R.D. and Gardoll, S.J. 2010. Sediment-hosted lead-zinc deposits in Earth’s history. Economic Geology, 105, 593–625.
  • 34. Lisle, R.J. 1986. The sectional strain ellipse during progressive coaxial deformations. Journal of Structural Geology, 8, 809–817.
  • 35. Mc Clay, K. and Bonora, M. 2000. Analogue models of restraining stopovers in strike-slip fault systems. AAPG Bulletin, 85, 233–260.
  • 36. Mirnejad, H., Simonetti, A. and Molasalehi, F. 2015. Origin and formational history of some Pb-Zn deposits from Alborz and central Iran: Pb isotope constraints. Journal of International Geology Review, 57, 463–471.
  • 37. Mitra, S. 2003. A unified kinematic model for the evolution of detachment folds. Journal of Structural Geology, 25, 1659–1673.
  • 38. Modaresnia, M., Khosrotehrani, K., Momeni, I. and Babazadeh, S.A. 2012. Upper Cretaceous planktonic foraminiferal biostratigraphy of east Dorfak area (Guilan – north of Iran). Life Science Journal, 9, 242–253.
  • 39. Mukherjee, S. 2013. Deformation Microstructures in Rocks. 112 pp. Springer Science & Business Media; Berlin.
  • 40. Mukherjee, S. 2014. Review of flanking structures in mesoand micro-scales. Geological Magazine, 151, 957–974.
  • 41. Mukherjee, S. 2015. Atlas of Structural Geology. 165 pp. Elsevier.
  • 42. Nazari, H., Ritz, J.F., Walker R.T., Salamati R., Rizza M. and Patnaik R. 2014. Paleoseismic evidence for a medieval earthquake, and a preliminary estimate of late Pleistocene slip-rate, on the Firouzkuh strike-slip fault in the Central Alborz region of Iran. Journal of Asian Earth Sciences, 82, 124–135.
  • 43. Nekouvaght Tak, M., Bazargani-Guilani. K. and Framarzi, M. 2009. Geology and Geochemistry of the lead-zinc carbonated hosted MVT mineralization in the north Semnan. Central Alborz., Iran. In: Procceding of 10 th Biennial SGA Meeting Townsville, 499–501. Economic Geology Research Unit, James Cook University; Australia.
  • 44. Ostendorf, J., Henjes-Kunst, F., Mondillo, N., Boni, M., Schneider, J. and Gutzmer, J. 2015. Formation of Mississippi Valley-type deposits linked to hydrocarbon generation in extensional tectonic settings: Evidence from the Jabali Zn-Pb-(Ag) deposit (Yemen). Geology, 43, 1055–1058.
  • 45. Paradis, S., Hannigan, P., and Dewing, K. 2007. Mississippi Valley-type lead-zinc deposits (MVT). In: Goodfellow, W.D. (Ed.), Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. Geological Association of Canada, Mineral Deposits Division, Special Publication, 5, 185–203.
  • 46. Paylor, E.D. and Yin, A.N. 1993. Left-slip evolution of the North Owl Creek fault system, Wyoming, during Laramide shortening. In: Christopher J. Schmidt, Ronald B. Chase and Eric A. Erslev (Eds), Laramide basement deformation in the Rocky Mountain foreland of the western United States. Geological Society of America Special Papers, 280, 229–242.
  • 47. Price, N.J. 1966. Fault and Joint Development in Brittle and Semi-Brittle Rock. 186 pp. Pergamon Press; New York.
  • 48. Rajabi, A., Rastad, E. and Canet, C. 2013. Metallogeny of Permian–Triassic carbonate-hosted Zn-Pb and F deposits of Iran: A review for future mineral exploration. Australian Journal of Earth Sciences, 60, 197–216.
  • 49. Ritz, J.F., Nazari, H., Ghassemi, A., Salamati, R., Shafei, A., Solaymani, S. and Vernant, P. 2006. Active transtension inside Central Alborz: A new insight into northern Iran–southern Caspian geodynamics. Geology, 34, 477–480.
  • 50. Robb, L.J. 2005. Introduction to Ore-forming processes. 373 pp. Blackwell Publishing Australia; Carlton, Victoria.
  • 51. Roedder, E. 1984. Fluid inclusions. Reviews in Mineralogy, Mineralojical Society of America, 12, 644.
  • 52. Sadeghi, A., Nezafati, N., Hakimi Asiabar, S. and Ganji, A. 2022. Geological, geochemical and fluid inclusion investigations on the Duna Pb-Ba-(Ag) deposit, Central Alborz, North Central Iran. Geologia Croatica, 75, 145–163.
  • 53. Sajadi Nasab, M.A., Vosoughi Abedini, M., Emami, M.H. and Ghorbani, M. 2014. Petrogenesis of the Akapol Granitoidic intrusion, Kelardasht area, Central Alborz, Iran. Scientific Quarterly Journal, Geosciences, 23, 241–252.
  • 54. Samanirad, A. 1999. Geology, petrology and genesis of Duna Lead deposit in the Central Alborz, 125 pp. Unpublished M.Sc. Thesis, Islamic Azad University; Tehran. [In Persian]
  • 55. Shepherd, T.J., Rankin, A.H. and Alderton, D.H.M. 1985. A Practical Guide to Fluid Inclusion Studies. 239 pp. Chapman and Hall, New York.
  • 56. Steele-Macinnis, M., Bodnar, R.J. and Naden, J. 2011. Numerical model to determine the composition of H 2O-Na-Cl-CaCl2 fluid inclusions based on microthermometric and microanalytical data. Geochimica et Cosmochimica Acta, 75, 21–40.
  • 57. Wilkinson, J.J. and Earls, G. 2000. A high-temperature hydrothermal origin for black dolomite matrix breccias in the Irish Zn-Pb orefield. Mineralogical Magazine, 64, 1077–1096.
  • 58. Wilkinson, J.J. 2001. Fluid inclusion in hydrothermal ore deposits. Lithos, 55, 229–272.
  • 59. Wilkinson, J.J. and Eyre, S.L. 2005. Ore-forming processes in Irish-type carbonate-hosted Zn-Pb deposits: Evidence from mineralogy, chemistry, and isotopic composition of sulphides at the Lisheen mine. Economic Geology, 100, 63–86.
  • 60. Wilkinson, J.J. and Hitzman, M.W. 2015. The Irish Zn-Pb Orefield: The view from 2014, 59–69. Irish Association for Economic Geology, Geological survey of Irland; Dublin.
  • 61. Yaghoobpour, M. 2004. Investigation of geochemical, Isotopic and fluid inclusion related to the source Pb-Zn ore deposit in Duna, 136 pp. M.Sc. Thesis, Shomal University; Tehran.
  • 62. Zanchi, A., Berra, F., Mattei, M., Ghassemi, M.R. and Sabouri, J. 2006. Inversion tectonics in Central Alborz, Iran. Journal of Structural Geology, 28, 2023–2037.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-86d91dd0-be66-48d0-b2d9-68c968eab569
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.