PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Low impact development practices: a review of current research and recommendations for future directions

Autorzy
Identyfikatory
Warianty tytułu
PL
Praktyka rozwoju słabo wpływającego: przegląd aktualnych badań i zalecenia dotyczące przyszłych ich kierunków
Języki publikacji
EN
Abstrakty
EN
A low impact development (LID) is an alternative land development approach for managing stormwater that has been recommended instead of the traditional stormwater design. The main purpose of LID is to reduce the impact of development on water related problems through the use of stormwater management practices that infiltrate, evaporate, or harvest and use stormwater on the site where it falls. In recent years, more research has been carried out on the individual practice of LID such as bioretention, pervious pavements, rain garden and grassed swales. Nowadays LID practices have been successfully used to manage stormwater runoff, improve water quality, protect the environmental and hydrological aspects of the developed areas. Bioretention cells have been effectively used in retaining large volumes of runoff and pollutants on site. Pervious pavements have been extremely effective practice in infiltrating stormwater runoff as early as possible as rain fall on site and store a large quantity of water. Nowadays, sand ditch a new water harvesting technique is used that significantly reduces runoff and sediment losses and increases infiltration and soil loss. This paper highlights evidence in the literature regarding the beneficial uses of LID practices and encourage to adopt these practices for environmental friendly construction and sustainable development in the world.
PL
Zastosowanie praktyki rozwoju słabo wpływającego (LID) jest alternatywnym podejściem do zagospodarowania wód opadowych, które jest zalecane zamiast tradycyjnych projektów zarządzania wodą deszczową. Głównym celem LID jest zmniejszenie wpływu rozwoju na problemy związane z wodą poprzez stosowanie praktyk zarządzania wodą deszczową obejmujących filtrację, odparowanie lub zbieranie i lokalne wykorzystanie tych wód. W ostatnich latach większość badań przeprowadzonych w ramach indywidualnej praktyki LID dotyczyło bioretencji, przepuszczalnych nawierzchni, deszczowych ogrodów i trawiastych zagłębień terenu. Obecnie praktyki LID z powodzeniem są wykorzystywane do zarządzania spływami wody deszczowej, poprawy jakości tej wody, z zachowaniem wymogów ochrony środowiskowej i hydrologicznej. Komórki bioretencyjne zostały skutecznie wykorzystane w ograniczaniu dużych spływów, także zanieczyszczeń. Przepuszczalne chodniki były niezwykle skuteczne w praktyce szybkiej filtracji spływu i lokalnym przechowywaniu dużej ilości wody. Obecnie, nowo stosowaną techniką zbierania wody jest rów z piaskiem, który znacząco zmniejsza spływ i straty osadów oraz gleby, zwiększając filtrację. W artykule przedstawiono dane literaturowe dotyczące stosowania praktyk LID i ich pozytywnego wpływu na rozwój budownictwa przyjaznego dla środowiska i zrównoważonego rozwoju w świecie.
Rocznik
Strony
543--563
Opis fizyczny
Bibliogr. 111 poz., wykr., rys., tab.
Twórcy
autor
  • Construction Environmental Engineering, Korea Institute of Civil Engineering and Building Technology Campus, University of Science and Technology, 283, Goyangdae-ro, Ilsanseo-gu, Goyang-si, Geonggi-do, Republic of Korea, phone +82 31 910 07 42
autor
  • Construction Environmental Engineering, Korea Institute of Civil Engineering and Building Technology Campus, University of Science and Technology, 283, Goyangdae-ro, Ilsanseo-gu, Goyang-si, Geonggi-do, Republic of Korea, phone +82 31 910 07 42
  • Environmental & Plant Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology, 283, Goyangdae-ro, Ilsanseo-gu, Goyang-si, Geonggi-do, Republic of Korea, phone +82 31 910 03 04
Bibliografia
  • [1] Hollis GE. Water yield chances after the urbanization of the canon's brook catchment, Harlow, England. (Changements de l'apport d'eau à la suite de l'urbanisation du bassin versant de ‘Canon's Brook’à Harlow, en Angleterre). Hydrol Sci J. 1977;22(1):61-75. DOI: 10.1080/02626667709491694.
  • [2] Jennings DB, Jarnagin ST. Changes in anthropogenic impervious surfaces, precipitation and daily streamflow discharge: a historical perspective in a mid-Atlantic subwatershed. Landscape Ecol. 2002;17(5):471-489. DOI: 10.1023/A:1021211114125.
  • [3] Moore WL, Morgan CW. Effects of watershed changes on streamflow. Water Resources Symposium (No. 2 Austin [etc]). Austin: Univ. of Texas; 1969.
  • [4] Leopold LB. Hydrology for urban land planning: A guidebook on the hydrologic effects of urban land use. Pennsylvania: US Government Printing Office; 1968. http://pubs.er.usgs.gov/publication/cir554.
  • [5] Makepeace DK, Smith DW, Stanley SJ. Urban stormwater quality: summary of contaminant data. Crit Rev Environ Sci Technol. 1995;25(2):93-139. DOI: 10.1080/10643389509388476.
  • [6] US EPA. Results of the nationwide urban runoff program. 28 selected towns of USA: United States Environmental Protection Agency; 1983. NTIS PB84-185552. http://www.epa.gov/npdes/pubs/sw_nurp_vol_1_finalreport.pdf.
  • [7] US EPA. Low impact development (LID), a literature review. Florida and Washington DC: United States Environmental Protection Agency, 2000; EPA-841-B-00-005. http://water.epa.gov/polwaste/green/upload/lid.pdf.
  • [8] Coffman LS. Low-impact Development: An Alternative Stormwater Management Technology. Handbook of Water Sensitive Planning and Design. Maryland: France RL; 2002:97-123.
  • [9] Moglen GE, Gabriel SA, Faria JA. A framework for quantitative smart growth in land development. J Am Water Resour Assoc. 2003;39(4):947-959. https://scholar.vt.edu/access/content/group/359be9a6-39e4-43fdb090-cce1d3d2ded8/papers/JAWRA-SmartGrowth-modified.pdf.
  • [10] Low-impact development design strategies: an integrated design approach. Maryland: Department of Environmental Resources, Programs and Planning Division, Prince George’s County; 1999. http://water.epa.gov/polwaste/green/upload/lidnatl.pdf.
  • [11] Booth DB, Jackson CR. Urbanization of aquatic systems: degradation thresholds, stormwater detection, and the limits of mitigation. J Am Water Resour Assoc. 1997;33(5):1077-1090. http://faculty.washington.edu/dbooth/Booth_and_Jackson_1997.pdf.
  • [12] Hunt WF, Lord WG. Urban Waterways: Bioretention performance, design, construction, and maintenance. North Carolina Cooperative Extension Service. AGW-588-05, 2006. http://www.bae.ncsu.edu/stormwater/PublicationFiles/Bioretention2006.pdf.
  • [13] Davis AP. Field performance of bioretention: Hydrology impacts. J Hydrol Eng. 2008;13(2):90-95. DOI: 10.1061/(ASCE)1084-0699(2008)13:2(90).
  • [14] Fassman EA, Blackbourn S. J Hydrol Eng. 2010. DOI: 10.1061/(ASCE)HE.1943-5584.0000238.
  • [15] Gregoire BG, Clausen JC. Effect of a modular extensive green roof on stormwater runoff and water quality. Ecol Eng. 2011;37(6):963-969. DOI:10.1016/j.ecoleng.2011.02.004.
  • [16] Ahiablame LM., Engel BA, Chaubey I. Effectiveness of low impact development practices: literature review and suggestions for future research. Water Air Soil Pollut. 2012;223(7):4253-4273. DOI: 10.1007/s11270-012-1189-2.
  • [17] McNett JK, Hunt WF, Davis AP. J Environ Eng. 2011;137(9):790-799. DOI: 10.1061/(ASCE)EE.1943-7870.0000373.
  • [18] HUD (U.S. Department of Housing and Urban Development). The practice of low impact development. Office of Policy Development and Research. Washington, D.C. 2003, Report prepared by NAHB Research Center, Inc. Contract No. H-21314CA.
  • [19] Davis AP. Green engineering principles promote low-impact development. Environ Sci Technol. 2005;39(16):338A-344A. DOI: 10.1021/es053327e.
  • [20] DOD (Department of Defense). The low impact development manual, 2004: UFC-3-210-10. http://www.lowimpactdevelopment.org/lid%20articles/ufc_3_210_10.pdf.
  • [21] Hunt WF, Traver RG, Davis AP, Emerson CH, Collins KA, Stagge JH, et al. Low impact development practices: designing to infiltrate in urban environments. Effects of urbanization on groundwater: an engineering case-based approach for sustainable development, 2010:308-343. DOI: 10.1061/9780784410783.ch12.
  • [22] Hunt WF, Szpir LL. Urban waterways, permeable pavements, green roofs and cisterns, stormwater treatment practices for low-impact development. NC State University and NC A&T University Cooperative Extension, 2006. http://www.bae.ncsu.edu/stormwater/PublicationFiles/BMPs4LID.pdf.
  • [23] Ahiablame LM, Engel BA, Chaubey I. Effectiveness of low impact development practices: literature review and suggestions for future research. Water Air Soil Pollut. 2012;223(7):4253-4273. DOI: 10.1007/s11270-012-1189-2.
  • [24] Davis AP, Hunt WF, Traver RG, Clar, M. Bioretention technology: Overview of current practice and future needs. J Environ Eng. 2009;135(3):109-117. DOI: 10.1061/(ASCE)0733-9372(2009)135:3(109).
  • [25] CEI (Comprehensive Environmental Inc.). City of Nashua, New Hampshire alternative stormwater management methods planning and guidance. Final Report, Part 1, March 2003. http://www.pennichuck.com/report/Nashua-Stormwater-Mgmt-Methods.pdf.
  • [26] Reese AJ. Volume-based hydrology. Stormwater. 2009;10(6):54-67. https://smartech.gatech.edu/bitstream/handle/1853/46236/5.6.5_Lemoine_158.pdf.
  • [27] Debo TN, Reese A. Municipal Stormwater Management. CRC Press; 2002. https://www.crcpress.com/Municipal-Stormwater-Management-Second-Edition/Debo-Reese/9781566705844.
  • [28] Zimmer CA, Heathcote IW, Whiteley HR, Schroter H. Low-impact-development practices for stormwater: implications for urban hydrology. Canadian Water Res J. 2007;32(3):193-212. DOI: 10.4296/cwrj3203193.
  • [29] Lloyd S. Water sensitive urban design in the Australian context, 2001. http://www.lsln.net.au/jspui/handle/1/11522.
  • [30] Scholz, M, Grabowiecki P. Review of permeable pavement systems. Build Environ. 2007;42(11):3830-3836. DOI: 10.1016/j.buildenv.2006.11.016.
  • [31] Pezzaniti D, Beecham S, Kandasamy J. Influence of clogging on the effective life of permeable pavements. Proc ICE-Water Manage. 2009;162(3):211-220. DOI: 10.168/WAMA.2009.00034.
  • [32] USEPA (US Environmental Protection Agency). Stormwater technology fact sheet. Bioretention. Washington, DC: Office of Water; 1999. EPA 832-F-99-012.
  • [33] Bioretention manual. Maryland: Department of Environmental Resources, Prince George’s County; 2007. http://www.aacounty.org/DPW/Highways/Resources/Raingarden/RG_Bioretention_PG%20CO.pdf.
  • [34] Design manual for use of bioretention in stormwater management. County PGC; 1993. http://water.epa.gov/polwaste/npdes/swbmp/Bioretention-Rain-Gardens.cfm.
  • [35] Dietz ME. Low impact development practices: A review of current research and recommendations for future directions. Water Air Soil Pollut. 2007;186(1-4):351-363.
  • [36] Line DE, Hunt WF. Performance of a bioretention area and a level spreader-grass filter strip at two highway sites in North Carolina. J Irrig Drain Eng Div Am Soc Civ Eng. 2009;135(2):217-224. DOI: 10.1061/(ASCE)0733-9437(2009)135:2(217).
  • [37] Roy-Poirier A, Champagne P, Filion Y. Review of bioretention system research and design: Past, present, and future. J Environ Eng. 2010;136(9):878-889. DOI: 10.1061/(ASCE)EE.1943-7870.0000227.
  • [38] Chapman C, Horner RR. Performance assessment of a street-drainage bioretention system. Water Environ Res. 2010;82(2):109-119. DOI: 10.2175/106143009X426112.
  • [39] DeBusk KM, Wynn TM. Storm-water bioretention for runoff quality and quantity mitigation. J Environ Eng. 2011;137(9):800-808. DOI: 10.1061/(ASCE)EE.1943-7870.0000388.
  • [40] Ahiablame LM, Engel BA, Chaubey I. Effectiveness of low impact development practices: literature review and suggestions for future research. Water Air Soil Pollut. 2012;223(7):4253-4273. DOI:10.1007/s11270-012-1189-2.
  • [41] Hunt WF, Smith JT, Jadlocki SJ, Hathaway JM, Eubanks PR. Pollutant removal and peak flow mitigation by a bioretention cell in urban Charlotte, NC. J Environ Eng. 2008. DOI: 10.1061/(ASCE)0733-9372(2008)134:5(403).
  • [42] Davis AP, Shokouhian M, Sharma H, Minami C. Water quality improvement through bioretention media: Nitrogen and phosphorus removal. Water Environ Res. 2006:284-293. DOI: 10.2175/106143005X94376.
  • [42] Hunt WF, Jarrett AR, Smith JT, Sharkey LJ. Evaluating bioretention hydrology and nutrient removal at three field sites in North Carolina. J Irrig Drain Eng. 2006. DOI: 10.1061/(ASCE)0733-9437(2006)132:6(600).
  • [44] Luell SK, Hunt WF, Winston RJ. Evaluation of undersized bioretention stormwater control measures for treatment of highway bridge deck runoff. Water Sci Technol. 2011;64(4):974-979. http://www.ncbi.nlm.nih.gov/pubmed/22097087.
  • [45] Kim H, Seagren EA, Davis AP. Engineered bioretention for removal of nitrate from stormwater runoff. Water Environ Res. 2003:355-367. http://www.jstor.org/stable/25045707.
  • [46] Dietz ME, Clausen JC. Saturation to improve pollutant retention in a rain garden. Environ Sci Technol. 2006;40(4):1335-1340. DOI: 10.1021/es051644f.
  • [47] Ergas SJ, Sengupta S, Siegel R, Pandit A, Yao Y, Yuan X, et al. Performance of nitrogen-removing bioretention systems for control of agricultural runoff. J Environ Eng. 2010;136(10):1105-1112. DOI: 10.1061/(ASCE)EE.1943-7870.0000243.
  • [48] Davis AP, Shokouhian M, Sharma H, Minami C, Winogradoff D. Water quality improvement through bioretention: Lead, copper, and zinc removal. Water Environ Res. 2003:73-82. http://www.jstor.org/stable/25045664.
  • [49] Sun X, Davis AP. Heavy metal fates in laboratory bioretention systems. Chemosphere. 2007;66(9):1601-1609. DOI: 10.1016/j.chemosphere.2006.08.013.
  • [50] Zhang W, Brown GO, Storm DE. Enhancement of heavy metals retention in sandy soil by amendment with fly ash. Trans ASABE. 2008;51(4):1247-1254. http://cat.inist.fr/?aModele=afficheN&cpsidt=20763846.
  • [51] Zhang L Seagren EA, Davis AP, Karns JS. The capture and destruction of Escherichia coli from simulated urban runoff using conventional bioretention media and iron oxide-coated sand. Water Environ Res. 2010;82(8):701-714. DOI: 10.2175/106143010X12609736966441.
  • [52] Zhang L, Seagren EA, Davis AP, Karns JS. Long-term sustainability of Escherichia coli removal in conventional bioretention media. J Environ Eng. 2011;137(8):669-677. DOI: 10.1061/(ASCE)EE.1943-7870.0000365.
  • [53] Hathaway AM, Hunt WF, Wright JD, Jadlocki SJ. Field evaluation of indicator bacteria removal by stormwater BMPs in North Carolina. In World Environmental and Water Resources Congress 2009@sGreat Rivers, ASCE, 2009. 1123-1132. DOI: 10.1061/41036(342)112.
  • [54] Brown RA, William III FH. Impacts of construction activity on bioretention performance. J Hydr Eng. 2009;15(6):386-394. DOI: 10.1061/(ASCE)HE.1943-5584.0000165.
  • [55] Trowsdale SA, Simcock R. Urban stormwater treatment using bioretention. J Hydr. 2011;397(3):167-174. DOI: 10.1016/j.jhydrol.2010.11.023.
  • [56] Brown RA, Hunt WF. Water Sci Technol. 2012;65(2):361-367. DOI: 10.2166/wst.2012.860.
  • [57] Davis AP, Shokouhian M, Sharma H, Minami C. Water Environ Res. 2001:5-14. http://www.jstor.org/stable/25045454.
  • [58] Hsieh CH, Davis AP. Evaluation and optimization of bioretention media for treatment of urban storm water runoff. J Environ Eng. 2005;131(11):1521-1531. DOI: 10.1061/(ASCE)0733-9372(2005)131:11(1521).
  • [59] Glass C, Bissouma S. Evaluation of a parking lot bioretention cell for removal of stormwater pollutants. Trans Ecol Environ. 2005:699-708. http://cat.inist.fr/?aModele=afficheN&cpsidt=17626010.
  • [60] Hong E, Seagren EA, Davis AP. Sustainable oil and grease removal from synthetic stormwater runoff using bench-scale bioretention studies. Water Environ Res. 2006:141-155. DOI: 10.2175/106143005X89607.
  • [61] Roseen R, Ballestero T, Houle J, Avelleneda P, Wildey R, Briggs J, et al. Storm water low-impact development, conventional structural, and manufactured treatment strategies for parking lot runoff: Performance evaluations under varied mass loading conditions. Transp Res Rec. 2006:135-147. DOI: 10.3141/1984-15.
  • [62] Davis AP. Field performance of bioretention. Water quality. Environ Eng Sci. 2007;24(8):1048-1064. DOI: 10.1089/ees.2006.0190.
  • [63] Rusciano GM, Obropta CC. Bioretention column study: Fecal coliform and total suspended solids reductions. Trans ASABE. 2007;50(4):1261-1269. http://www.water.rutgers.edu/Rain_Gardens/RGWebsite/misc/ColumnStudy.pdf.
  • [64] USEPA (US Environmental Protection Agency). Stormwater technology fact sheet. Vegetated swales. Washington, DC: Office of Water; 1999. EPA 832-F-99-006. http://www.in.gov/idem/files/apph-ref.pdf.
  • [65] Kirby JT, Durrans SR, Pitt R, Johnson PD. Hydraulic resistance in grass swales designed for small flow conveyance. J Hydraul Eng. 2005;131(1):65-68. DOI: 10.1061/(ASCE)0733-9429(2005)131:1(65).
  • [66] Barrett ME, Walsh PM, Joseph F. Malina Jr, Charbeneau RJ. Performance of vegetative controls for treating highway runoff. J Environ Eng. 1998;124(11):1121-1128. DOI: 10.1061/(ASCE)0733-9372(1998)124:11(1121).
  • [67] Fach S, Engelhard C, Wittke N, Rauch W. Performance of infiltration swales with regard to operation in winter times in an Alpine region. Water Sci Technol. 2011;63(1):2658. DOI: 10.2166/wst.2011.153.
  • [68] Backstrom M. Sediment transport in grassed swales during simulated runoff events. Water Sci Technol. 2002;45(7):41-49. www.ncbi.nlm.nih.gov/pubmed/11989891.
  • [69] Backstrom M. Grassed swales for stormwater pollution control during rain and snowmelt. Water Sci Technol. 2003;48(9):123-134. http://wst.iwaponline.com/content/48/9/123.
  • [70] Miller C. Vegetated Roof Covers, A New Method for Controlling Runoff in Urbanized Areas. Proceedings from the 1998 Pennsylvania Stormwater Management Symposium. Villanova University; 1998.
  • [71] GRRP (Green Roof Research Program). The Green roof research program at Michigan State University, 2010 [online]. http://www.hrt.msu.edu/greenroof/#Green%20Roof%20.
  • [72] Bianchini F, Hewage K. How “green” are the green roofs? Lifecycle analysis of green roof materials. Build Environ 2012;48:57-65. DOI: 10.1016/j.buildenv.2011.08.019.
  • [73] Ahiablame LM, Engel BA, Chaubey I. Effectiveness of low impact development practices: literature review and suggestions for future research. Water Air Soil Pollut. 2012;223(7):4253-4273. DOI: 10.1007/s11270-012-1189-2.
  • [74] Rowe DB. Green roofs as a means of pollution abatement. Environ Pollut. 2011;159(8):2100-2110. DOI: 10.1016/j.envpol.2010.10.029.
  • [75] Alsup S, Ebbs S, Retzlaff W. The exchangeability and leachability of metals from select green roof growth substrates. Urban Ecosystems. 2010;13(1):91-111. DOI: 10.1007/s11252-009-0106-y.
  • [76] Berndtsson JC, Emilsson T, Bengtsson L. The influence of extensive vegetated roofs on runoff water quality. Sci Total Environ. 2006;355(1):48-63. DOI: 10.1016/j.scitotenv.2005.02.035.
  • [77] Hathaway AM, Hunt WF, Jennings GD. A field study of green roof hydrologic and water quality performance. Trans ASABE5. 2008;1(1):37-44. http://www.bae.ncsu.edu/people/faculty/jennings/Publications/ASABE%20Hathaway%20Hunt%20Jennings.pdf.
  • [78] Vijayaraghavan K., Joshi UM, Balasubramanian R. A field study to evaluate runoff quality from green roofs. Water Res. 2012;46(4):1337-1345. DOI: 10.1016/j.watres.2011.12.050.
  • [79] Zobrist J, Müller SR, Ammann A, Bucheli TD, Mottier V, Ochs M, et al. Quality of roof runoff for groundwater infiltration. Water Res. 2000;34(5):1455-1462. DOI: 10.1016/S0043-1354(99)00290-0.
  • [80] USEPA S. Stormwater Technology Fact Sheet: Porous Pavement, 1999.
  • [81] Collins KA, Hunt WF, Hathaway JM. Hydrologic comparison of four types of permeable pavement and standard asphalt in eastern North Carolina. J Hydrol Eng. 2008. DOI: 10.1061/(ASCE)1084-0699(2008)13:12(1146).
  • [82] Collins KA, Hunt WF, Hathaway JM. Side-by-side comparison of nitrogen species removal for four types of permeable pavement and standard asphalt in eastern North Carolina. J Hydrol Eng. 2009;15(6):512-521. DOI: 10.1061/(ASCE)HE.1943-5584.0000139.
  • [83] Hunt WF, Stephens S, Mayes D. Permeable pavement effectiveness in eastern North Carolina. Proceedings of 9th International Conference on Urban Drainage. Portland: ASCE; 2002.
  • [84] Bean EZ, Hunt WF, Bidelspach DA. Field survey of permeable pavement surface infiltration rates. J Irrig Drain Eng. 2007. DOI: 10.1061/(ASCE)0733-9437(2007)133:3(249).
  • [85] Brattebo BO, Booth DB. Water Res. 2003;37(18):4369-4376. DOI: 10.1016/S0043-1354(03)00410-X.
  • [86] Dreelin EA, Fowler L, Carroll CR. A test of porous pavement effectiveness on clay soils during natural storm events. Water Res. 2006;40(4):799-805. DOI: 10.1016/j.watres.2005.12.002.
  • [87] James W, Shahin R. A laboratory examination of pollutants leached from four different pavements by acid rain. Advances in Modeling the Management of Stormwater Impacts. 1998;6(17):321.
  • [88] Fach S, Geiger WF. Effective pollutant retention capacity of permeable pavements for infiltrated road runoffs determined by laboratory tests. Water Sci Technol. 2005;51(2):37-45. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.365.9249&rep=rep1&type=pdf.
  • [89] Myers B, Beecham S, van Leeuwen JA. Water quality with storage in permeable pavement basecourse. Proceedings of the ICE-Water Management. 2011;164(7):361-372. DOI: 10.1680/wama.2011.164.7.361.
  • [90] Dierkes C, Kuhlmann L, Kandasamy J, Angelis G. Pollution retention capability and maintenance of permeable pavements. Proc. 9th International Conference on Urban Drainage, Global Solutions for Urban Drainage, 2002. DOI: 10.1061/40644(2002)40.
  • [91] Dierkes C, Holte A, Geiger WF. Heavy metal retention within a porous pavement structure. Proc. the Eighth International Conference on Urban Storm Drainage. 1999. http://extension.oregonstate.edu/stormwater/sites/default/files/heavy_metal_retention_with_pervious_pavement.pdf.
  • [92] Newman AP, Pratt CJ, Coupe SJ, Cresswell N. Oil bio-degradation in permeable pavements by microbial communities. Innovative Technologies in Urban Drainage. 2002;45(2):51-56. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.365.8488&rep=rep1&type=pdf.
  • [93] Legret M, Colandini V. Effects of a porous pavement with reservoir structure on runoff water: water quality and fate of heavy metals. Water Sci Technol. 1999;39(2):111-117. DOI: 10.1016/S0273-1223(99)00014-1.
  • [94] Pagotto C, Legret M, Le Cloirec P. Comparison of the hydraulic behaviour and the quality of highway runoff water according to the type of pavement. Water Res. 2000;34(18):4446-4454. DOI: 10.1016/S0043-1354(00)00221-9.
  • [95] Rushton BT. Low-impact parking lot design reduces runoff and pollutant loads. J Water Res Planning and Management. 2001;127(3):172-179. DOI: 10.1061/(ASCE)0733-9496(2001)127:3(172).
  • [96] Tota-Maharaj K, Scholz M. Efficiency of permeable pavement systems for the removal of urban runoff pollutants under varying environmental conditions. Environ Progress Sustainable Energy. 2010;29(3):358-369. DOI: 10.1002/ep.10418.
  • [97] Booth DB, Leavitt J. Field evaluation of permeable pavement systems for improved stormwater management. J Am Planning Assoc. 1999;65(3):314-325. DOI: 10.1080/01944369908976060.
  • [98] Fitts G. The new and improved open graded friction course mixes. Asphalt. 2002;17(2). http://worldcat.org/oclc/1514484.
  • [99] Ferguson BK. Porous Pavements. Florida: CRC Press; 2005. https://www.crcpress.com/Porous-Pavements/Ferguson/9780849326707.
  • [100] Stenmark C. An alternative road construction for stormwater management in cold climates. Water Sci Technol. 1995;32(1):79-84. DOI: 10.1016/0273-1223(95)00541-T.
  • [101] Toronto and Region Conservation. Performance evaluation of permeable pavement and a bioretention swale. Seneca College, King City, Ontario. Toronto and Region Conservation Authority, 2006: Interim Report #2. https://wiki.umn.edu/pub/AARCapstone/BestManagementPractices/StormwaterManagement2.pdf.
  • [102] Traver RG, Welker AL, Horst M, Vanacore M, Braga A, Kob L, et al. Lessons in porous concrete. Stormwater. 20005; July/August: 30-45.
  • [103] Kwiatkowski M, Welker AL, Traver RG, Vanacore M, Ladd T. Evaluation of an infiltration best management practice utilizing pervious concrete. J Am Water Resour Assoc. 2007:1208-1222. DOI: 10.1111/j.1752-1688.2007.00104.x.
  • [104] Balades JD, Legret M, Madiec H. Permeable pavements: Pollution management tools. Water Sci Technol. 1995;32(1):49-56. DOI: 10.1016/0273-1223(95)00537-W.
  • [105] Bioretention manual. Landover, MD: Prince George’s County (MD) Government, Department of Environmental Protection. Watershed Protection Branch; 2002.
  • [106] Widomski MK, Sobczuk H, Olszta W. Sand-filled drainage ditches for erosion control: Effects on infiltration efficiency. Soil Sci Soc Am J. 2010;74(1):213-220. DOI: 10.2136/sssaj2009.0003.
  • [107] Abu-Zreig M, Tamimi A. Field evaluation of sand-ditch water harvesting technique in Jordan. Agricult Water Manage. 2011;98(8):1291-1296. DOI: 10.1016/j.agwat.2011.03.008.
  • [108] Makepeace DK, Smith DW, Stanley SJ. Urban stormwater quality: summary of contaminant data. Crit Rev in Environ Sci Technol. 1995; 25(2):93-139. DOI: 10.1080/10643389509388476.
  • [109] Pitt R, Clark S, Field R. Groundwater contamination potential from stormwater infiltration practices. Urban Water. 1999;1(3):217-236. DOI: 10.1016/S1462-0758(99)00014-X.
  • [110] Rusciano GM, Obropta CC. Efficiency of bioretention systems to reduce fecal coliform counts in stormwater. North American Surface Water Quality Conference and Exposition, Orlando, FL. July. 2005. http://water.usgs.gov/wrri/AnnualReports/2004/FY2004_NJ_Annual_Report.pdf
  • [111] Kaushal SS, Groffman PM, Likens GE, Belt KT, Stack WP, Kelly VR, et al. Increased salinization of fresh water in the northeastern United States. Proc Natl Acad Sci USA. 2005;102(38):13517-13520. DOI: 10.1073/pnas.0506414102.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-86d550bb-502e-4215-be6e-d31e0a998c96
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.