PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Diamond composite with Ti2SnC and Zr2SnC phases

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Obtaining diamond compacts with a ceramic bonding phase for improving properties of this group of materials. One of the possibilities to improve the properties of PCD materials is the lowering of cobalt bonding phase content which is used in commercial materials. Design/methodology/approach: The new bonding phases were prepared using the self-propagating high temperature method of synthesis (SHS). The MAX compounds Zr2SnC and Ti2SnC were produced from stoichiometric mixtures of powders. Diamond powders mixtures with participation of 10 mass% of the SHS product were prepared. Diamond composites were obtained using the high pressure - high temperature sintering method. Microstructure investigations were performed using the electron scanning microscope. Phase compositions of the SHS products and diamond compacts were analyzed by x-ray diffraction. Findings: The X-ray phase analyses indicate that the bonding material prepared by means of the SHS method has a multiphase composition. As a result of reaction between carbon and elements of the bonding phase new carbon phases appear in the diamond compacts. Studies of the microstructures of the diamond composites show good consolidation without microcracks. There is good penetration of the bonding phase between diamond crystallites. Practical implications: Due to the ceramic bonding phase diamond composites should have better thermal resistance than the diamond with the cobalt bonding phase. The diamond with MAX phases could be used in “dry cutting” processes without harmful lubricants. Originality/value: MAX bonding phases with tin content for diamond compacts constitute an original value.
Rocznik
Strony
33--38
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
  • Institute of Advanced Manufacturing Technology, Centre for Materials Research and Sintering Technology, ul. Wrocławska 37a, 30-224 Kraków, Poland
Bibliografia
  • [1] J. Kopac, Advanced tool materials for high-speed machining, Proceedings of 12th International Scientific Conference on “Achievements in Mechanical and Materials Engineering” AMME’2003, Gliwice, 2003, 1119-1128.
  • [2] L.A. Dobrzański, L.W. Żukowska, J. Mikuła, K. Golombek, P. Podstawski, Functional properties of the sintered tool materials with (Ti,Al.)N coating, Journal of Achievements in Materials and Manufacturing Engineering 2 (2009) 134-141.
  • [3] L.A. Dobrzański, J. Mikuła, D. Pakuła, J. Kopac, M. Sokovic, Cutting properties of the ceramic tool materials based on Si3N4 and Al2O3 coated with PVD and CVD process, Proceedings of 12th International Scientific Conference on “Achievements in Mechanical and Materials Engineering” AMME’2003, Gliwice, 2003, 249-252.
  • [4] L. Jaworska, M. Rozmus, B. Królicka, A. Twardowska, Functionally graded cermets, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 73-76.
  • [5] L.A. Dobrzański, A. Kloc-Ptaszna, A. Dybowska, G. Matula, E. Gordo, J.M. Toralba, Effect of WC concentration on structure and properties of the gradient tool materials, Journal of Achievements in Materials and Manufacturing Engineering 24 (2007) 47-50.
  • [6] G. Matula, K. Golombek, J. Mikuła, L.A. Dobrzański, Strukture of sintered gradient tool materials, Journal of Achievements in Materials and Manufacturing Engineering 32/1 (2009) 23-28.
  • [7] M. Szutkowska, B. Smuk, A. Kalinka, K. Czechowski, B. Bućko, M. Boniecki, Selected mechanical properties and microstructure of Al2O3-ZrO2 nano ceramic composites, Journal of Achievements in Materials and Manufacturing Engineering 48/1 (2011) 58-63.
  • [8] P. Klimczyk, P. Figiel, I. Petrusha, A. Olszyna, Cubic boron nitride based composite for cutting applications, Journal of Achievements in Materials and Manufacturing Engineering 44/2 (2011) 198-204.
  • [9] J. Sulima, P. Figiel, M. Suśniak, M. Świątek, Sintering of TiB2 ceramic, Journal of Achievements in Materials and Science and Engineering 28/11 (2007) 687-690.
  • [10] L. Jaworska, Diamond-ceramic bonding phase composites for application in cutting tools, Ceramic Materials 63/1 (2011) 131-137.
  • [11] www.e6.com Diamond tool materials for metalworking, Element Six Ltd Shannon Co. Clare, 2011-2012.
  • [12] A.I. Kolomiitsev, V.E. Smirnov, Almaznyje Sverhtverdye Materialy 7 (1980) 4-5.
  • [13] Y.A. Kocherzhinskii, A.A. Shulzhenko, V.A. Shishkin, Vliyanie Vysokihogo Davlenija na structure I svoistva Matrialov, Kiev, Naukova Dumka, 1984, 34-40.
  • [14] S. Ozbayraktar, Polycrystalline diamond and cubic boron nitride, Handbook of Ceramic Hard Materials, Ralf Riedel (Ed.), Wiley-VCH, Weinheim, 2 (2000) 513-516.
  • [15] K. Mlungwane, I.J. Sigalas, M. Hermann, The development of diamond-silicon carbide composite material, Industrial Diamond Review 4 (2005) 62-65.
  • [16] L. Jaworska, P. Klimczyk, P. Putyra, M. Rozmus, M. Bucko, J. Morgiel, L. Stobierski, Diamond-MAX ceramics bonding phase composites - phases and microstructure analysis, Proceedings of the International Conference Porodorazrushchaiushchij i metalorabotajushchij instrument - tehnika, tehnologia ego izgotovlenia i primienienia, Krym, 2011.
  • [17] M.W. Barsoum, The MN+1AXN Phases: A new class of thermodynamically stable nanolaminates, Progress in Solid State Chemistry 28 (2000) 201-281.
  • [18] S.B. Li, G.P. Bei, H.X. Zhai, Y. Zhou, Bimodal microstructure and reaction mechanism of Ti2SnC synthesized by high temperature reaction using Ti/Sn/C and Ti/Sn/TiC powder compacts, Journal of the American Ceramic Society 12 (2006) 3617-3623.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-86d527fe-7dc4-496e-b189-39f4afe20b6a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.